laywerrobot/lib/python3.6/site-packages/tensorflow/python/keras/layers/pooling.py
2020-08-27 21:55:39 +02:00

818 lines
30 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Pooling layers.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import tensor_shape
from tensorflow.python.keras import backend
from tensorflow.python.keras.engine.base_layer import InputSpec
from tensorflow.python.keras.engine.base_layer import Layer
from tensorflow.python.keras.utils import conv_utils
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import nn
from tensorflow.python.util.tf_export import tf_export
class Pooling1D(Layer):
"""Pooling layer for arbitrary pooling functions, for 1D inputs.
This class only exists for code reuse. It will never be an exposed API.
Arguments:
pool_function: The pooling function to apply, e.g. `tf.nn.max_pool`.
pool_size: An integer or tuple/list of a single integer,
representing the size of the pooling window.
strides: An integer or tuple/list of a single integer, specifying the
strides of the pooling operation.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, length, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, length)`.
name: A string, the name of the layer.
"""
def __init__(self, pool_function, pool_size, strides,
padding='valid', data_format=None,
name=None, **kwargs):
super(Pooling1D, self).__init__(name=name, **kwargs)
if data_format is None:
data_format = backend.image_data_format()
if strides is None:
strides = pool_size
self.pool_function = pool_function
self.pool_size = conv_utils.normalize_tuple(pool_size, 1, 'pool_size')
self.strides = conv_utils.normalize_tuple(strides, 1, 'strides')
self.padding = conv_utils.normalize_padding(padding)
self.data_format = conv_utils.normalize_data_format(data_format)
self.input_spec = InputSpec(ndim=3)
def call(self, inputs):
# There is no TF op for 1D pooling, hence we make the inputs 4D.
if self.data_format == 'channels_last':
# input is NWC, make it NHWC
inputs = array_ops.expand_dims(inputs, 1)
# pool on the W dim
pool_shape = (1, 1) + self.pool_size + (1,)
strides = (1, 1) + self.strides + (1,)
data_format = 'NHWC'
else:
# input is NCW, make it NCHW
inputs = array_ops.expand_dims(inputs, 2)
# pool on the W dim
pool_shape = (1, 1, 1) + self.pool_size
strides = (1, 1, 1) + self.strides
data_format = 'NCHW'
outputs = self.pool_function(
inputs,
ksize=pool_shape,
strides=strides,
padding=self.padding.upper(),
data_format=data_format)
if self.data_format == 'channels_last':
return array_ops.squeeze(outputs, 1)
else:
return array_ops.squeeze(outputs, 2)
def compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
length = conv_utils.conv_output_length(input_shape[1], self.pool_size[0],
self.padding, self.strides[0])
return tensor_shape.TensorShape([input_shape[0], length, input_shape[2]])
def get_config(self):
config = {
'strides': self.strides,
'pool_size': self.pool_size,
'padding': self.padding
}
base_config = super(Pooling1D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@tf_export('keras.layers.MaxPool1D', 'keras.layers.MaxPooling1D')
class MaxPooling1D(Pooling1D):
"""Max pooling operation for temporal data.
Arguments:
pool_size: Integer, size of the max pooling windows.
strides: Integer, or None. Factor by which to downscale.
E.g. 2 will halve the input.
If None, it will default to `pool_size`.
padding: One of `"valid"` or `"same"` (case-insensitive).
Input shape:
3D tensor with shape: `(batch_size, steps, features)`.
Output shape:
3D tensor with shape: `(batch_size, downsampled_steps, features)`.
"""
def __init__(self, pool_size=2, strides=None,
padding='valid', data_format=None, **kwargs):
super(MaxPooling1D, self).__init__(
nn.max_pool,
pool_size=pool_size,
strides=strides,
padding=padding,
data_format=data_format,
**kwargs)
@tf_export('keras.layers.AveragePooling1D', 'keras.layers.AvgPool1D')
class AveragePooling1D(Pooling1D):
"""Average pooling for temporal data.
Arguments:
pool_size: Integer, size of the max pooling windows.
strides: Integer, or None. Factor by which to downscale.
E.g. 2 will halve the input.
If None, it will default to `pool_size`.
padding: One of `"valid"` or `"same"` (case-insensitive).
Input shape:
3D tensor with shape: `(batch_size, steps, features)`.
Output shape:
3D tensor with shape: `(batch_size, downsampled_steps, features)`.
"""
def __init__(self, pool_size=2, strides=None,
padding='valid', data_format=None, **kwargs):
super(AveragePooling1D, self).__init__(
nn.avg_pool,
pool_size=pool_size,
strides=strides,
padding=padding,
data_format=data_format,
**kwargs)
class Pooling2D(Layer):
"""Pooling layer for arbitrary pooling functions, for 2D inputs (e.g. images).
This class only exists for code reuse. It will never be an exposed API.
Arguments:
pool_function: The pooling function to apply, e.g. `tf.nn.max_pool`.
pool_size: An integer or tuple/list of 2 integers: (pool_height, pool_width)
specifying the size of the pooling window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the pooling operation.
Can be a single integer to specify the same value for
all spatial dimensions.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, height, width)`.
name: A string, the name of the layer.
"""
def __init__(self, pool_function, pool_size, strides,
padding='valid', data_format=None,
name=None, **kwargs):
super(Pooling2D, self).__init__(name=name, **kwargs)
if data_format is None:
data_format = backend.image_data_format()
if strides is None:
strides = pool_size
self.pool_function = pool_function
self.pool_size = conv_utils.normalize_tuple(pool_size, 2, 'pool_size')
self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
self.padding = conv_utils.normalize_padding(padding)
self.data_format = conv_utils.normalize_data_format(data_format)
self.input_spec = InputSpec(ndim=4)
def call(self, inputs):
if self.data_format == 'channels_last':
pool_shape = (1,) + self.pool_size + (1,)
strides = (1,) + self.strides + (1,)
else:
pool_shape = (1, 1) + self.pool_size
strides = (1, 1) + self.strides
outputs = self.pool_function(
inputs,
ksize=pool_shape,
strides=strides,
padding=self.padding.upper(),
data_format=conv_utils.convert_data_format(self.data_format, 4))
return outputs
def compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
if self.data_format == 'channels_first':
rows = input_shape[2]
cols = input_shape[3]
else:
rows = input_shape[1]
cols = input_shape[2]
rows = conv_utils.conv_output_length(rows, self.pool_size[0], self.padding,
self.strides[0])
cols = conv_utils.conv_output_length(cols, self.pool_size[1], self.padding,
self.strides[1])
if self.data_format == 'channels_first':
return tensor_shape.TensorShape(
[input_shape[0], input_shape[1], rows, cols])
else:
return tensor_shape.TensorShape(
[input_shape[0], rows, cols, input_shape[3]])
def get_config(self):
config = {
'pool_size': self.pool_size,
'padding': self.padding,
'strides': self.strides,
'data_format': self.data_format
}
base_config = super(Pooling2D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@tf_export('keras.layers.MaxPool2D', 'keras.layers.MaxPooling2D')
class MaxPooling2D(Pooling2D):
"""Max pooling operation for spatial data.
Arguments:
pool_size: integer or tuple of 2 integers,
factors by which to downscale (vertical, horizontal).
(2, 2) will halve the input in both spatial dimension.
If only one integer is specified, the same window length
will be used for both dimensions.
strides: Integer, tuple of 2 integers, or None.
Strides values.
If None, it will default to `pool_size`.
padding: One of `"valid"` or `"same"` (case-insensitive).
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
Input shape:
- If `data_format='channels_last'`:
4D tensor with shape:
`(batch_size, rows, cols, channels)`
- If `data_format='channels_first'`:
4D tensor with shape:
`(batch_size, channels, rows, cols)`
Output shape:
- If `data_format='channels_last'`:
4D tensor with shape:
`(batch_size, pooled_rows, pooled_cols, channels)`
- If `data_format='channels_first'`:
4D tensor with shape:
`(batch_size, channels, pooled_rows, pooled_cols)`
"""
def __init__(self,
pool_size=(2, 2),
strides=None,
padding='valid',
data_format=None,
**kwargs):
super(MaxPooling2D, self).__init__(
nn.max_pool,
pool_size=pool_size, strides=strides,
padding=padding, data_format=data_format, **kwargs)
@tf_export('keras.layers.AveragePooling2D', 'keras.layers.AvgPool2D')
class AveragePooling2D(Pooling2D):
"""Average pooling operation for spatial data.
Arguments:
pool_size: integer or tuple of 2 integers,
factors by which to downscale (vertical, horizontal).
(2, 2) will halve the input in both spatial dimension.
If only one integer is specified, the same window length
will be used for both dimensions.
strides: Integer, tuple of 2 integers, or None.
Strides values.
If None, it will default to `pool_size`.
padding: One of `"valid"` or `"same"` (case-insensitive).
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
Input shape:
- If `data_format='channels_last'`:
4D tensor with shape:
`(batch_size, rows, cols, channels)`
- If `data_format='channels_first'`:
4D tensor with shape:
`(batch_size, channels, rows, cols)`
Output shape:
- If `data_format='channels_last'`:
4D tensor with shape:
`(batch_size, pooled_rows, pooled_cols, channels)`
- If `data_format='channels_first'`:
4D tensor with shape:
`(batch_size, channels, pooled_rows, pooled_cols)`
"""
def __init__(self,
pool_size=(2, 2),
strides=None,
padding='valid',
data_format=None,
**kwargs):
super(AveragePooling2D, self).__init__(
nn.avg_pool,
pool_size=pool_size, strides=strides,
padding=padding, data_format=data_format, **kwargs)
class Pooling3D(Layer):
"""Pooling layer for arbitrary pooling functions, for 3D inputs.
This class only exists for code reuse. It will never be an exposed API.
Arguments:
pool_function: The pooling function to apply, e.g. `tf.nn.max_pool`.
pool_size: An integer or tuple/list of 3 integers:
(pool_depth, pool_height, pool_width)
specifying the size of the pooling window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 3 integers,
specifying the strides of the pooling operation.
Can be a single integer to specify the same value for
all spatial dimensions.
padding: A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format: A string, one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, depth, height, width, channels)`
while `channels_first` corresponds to
inputs with shape `(batch, channels, depth, height, width)`.
name: A string, the name of the layer.
"""
def __init__(self, pool_function, pool_size, strides,
padding='valid', data_format='channels_last',
name=None, **kwargs):
super(Pooling3D, self).__init__(name=name, **kwargs)
if data_format is None:
data_format = backend.image_data_format()
if strides is None:
strides = pool_size
self.pool_function = pool_function
self.pool_size = conv_utils.normalize_tuple(pool_size, 3, 'pool_size')
self.strides = conv_utils.normalize_tuple(strides, 3, 'strides')
self.padding = conv_utils.normalize_padding(padding)
self.data_format = conv_utils.normalize_data_format(data_format)
self.input_spec = InputSpec(ndim=5)
def call(self, inputs):
pool_shape = (1,) + self.pool_size + (1,)
strides = (1,) + self.strides + (1,)
if self.data_format == 'channels_first':
# TF does not support `channels_first` with 3D pooling operations,
# so we must handle this case manually.
# TODO(fchollet): remove this when TF pooling is feature-complete.
inputs = array_ops.transpose(inputs, (0, 2, 3, 4, 1))
outputs = self.pool_function(
inputs,
ksize=pool_shape,
strides=strides,
padding=self.padding.upper())
if self.data_format == 'channels_first':
outputs = array_ops.transpose(outputs, (0, 4, 1, 2, 3))
return outputs
def compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
if self.data_format == 'channels_first':
len_dim1 = input_shape[2]
len_dim2 = input_shape[3]
len_dim3 = input_shape[4]
else:
len_dim1 = input_shape[1]
len_dim2 = input_shape[2]
len_dim3 = input_shape[3]
len_dim1 = conv_utils.conv_output_length(len_dim1, self.pool_size[0],
self.padding, self.strides[0])
len_dim2 = conv_utils.conv_output_length(len_dim2, self.pool_size[1],
self.padding, self.strides[1])
len_dim3 = conv_utils.conv_output_length(len_dim3, self.pool_size[2],
self.padding, self.strides[2])
if self.data_format == 'channels_first':
return tensor_shape.TensorShape(
[input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3])
else:
return tensor_shape.TensorShape(
[input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]])
def get_config(self):
config = {
'pool_size': self.pool_size,
'padding': self.padding,
'strides': self.strides,
'data_format': self.data_format
}
base_config = super(Pooling3D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@tf_export('keras.layers.MaxPool3D', 'keras.layers.MaxPooling3D')
class MaxPooling3D(Pooling3D):
"""Max pooling operation for 3D data (spatial or spatio-temporal).
Arguments:
pool_size: tuple of 3 integers,
factors by which to downscale (dim1, dim2, dim3).
(2, 2, 2) will halve the size of the 3D input in each dimension.
strides: tuple of 3 integers, or None. Strides values.
padding: One of `"valid"` or `"same"` (case-insensitive).
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
while `channels_first` corresponds to inputs with shape
`(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
Input shape:
- If `data_format='channels_last'`:
5D tensor with shape:
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
- If `data_format='channels_first'`:
5D tensor with shape:
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`
Output shape:
- If `data_format='channels_last'`:
5D tensor with shape:
`(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)`
- If `data_format='channels_first'`:
5D tensor with shape:
`(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)`
"""
def __init__(self,
pool_size=(2, 2, 2),
strides=None,
padding='valid',
data_format=None,
**kwargs):
super(MaxPooling3D, self).__init__(
nn.max_pool3d,
pool_size=pool_size, strides=strides,
padding=padding, data_format=data_format, **kwargs)
@tf_export('keras.layers.AveragePooling3D', 'keras.layers.AvgPool3D')
class AveragePooling3D(Pooling3D):
"""Average pooling operation for 3D data (spatial or spatio-temporal).
Arguments:
pool_size: tuple of 3 integers,
factors by which to downscale (dim1, dim2, dim3).
(2, 2, 2) will halve the size of the 3D input in each dimension.
strides: tuple of 3 integers, or None. Strides values.
padding: One of `"valid"` or `"same"` (case-insensitive).
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
while `channels_first` corresponds to inputs with shape
`(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
Input shape:
- If `data_format='channels_last'`:
5D tensor with shape:
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
- If `data_format='channels_first'`:
5D tensor with shape:
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`
Output shape:
- If `data_format='channels_last'`:
5D tensor with shape:
`(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)`
- If `data_format='channels_first'`:
5D tensor with shape:
`(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)`
"""
def __init__(self,
pool_size=(2, 2, 2),
strides=None,
padding='valid',
data_format=None,
**kwargs):
super(AveragePooling3D, self).__init__(
nn.avg_pool3d,
pool_size=pool_size, strides=strides,
padding=padding, data_format=data_format, **kwargs)
class GlobalPooling1D(Layer):
"""Abstract class for different global pooling 1D layers.
"""
def __init__(self, **kwargs):
super(GlobalPooling1D, self).__init__(**kwargs)
self.input_spec = InputSpec(ndim=3)
def compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
return tensor_shape.TensorShape([input_shape[0], input_shape[2]])
def call(self, inputs):
raise NotImplementedError
@tf_export('keras.layers.GlobalAveragePooling1D',
'keras.layers.GlobalAvgPool1D')
class GlobalAveragePooling1D(GlobalPooling1D):
"""Global average pooling operation for temporal data.
Input shape:
3D tensor with shape: `(batch_size, steps, features)`.
Output shape:
2D tensor with shape:
`(batch_size, features)`
"""
def call(self, inputs):
return backend.mean(inputs, axis=1)
@tf_export('keras.layers.GlobalMaxPool1D', 'keras.layers.GlobalMaxPooling1D')
class GlobalMaxPooling1D(GlobalPooling1D):
"""Global max pooling operation for temporal data.
Input shape:
3D tensor with shape: `(batch_size, steps, features)`.
Output shape:
2D tensor with shape:
`(batch_size, features)`
"""
def call(self, inputs):
return backend.max(inputs, axis=1)
class GlobalPooling2D(Layer):
"""Abstract class for different global pooling 2D layers.
"""
def __init__(self, data_format=None, **kwargs):
super(GlobalPooling2D, self).__init__(**kwargs)
self.data_format = conv_utils.normalize_data_format(data_format)
self.input_spec = InputSpec(ndim=4)
def compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
if self.data_format == 'channels_last':
return tensor_shape.TensorShape([input_shape[0], input_shape[3]])
else:
return tensor_shape.TensorShape([input_shape[0], input_shape[1]])
def call(self, inputs):
raise NotImplementedError
def get_config(self):
config = {'data_format': self.data_format}
base_config = super(GlobalPooling2D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@tf_export('keras.layers.GlobalAveragePooling2D',
'keras.layers.GlobalAvgPool2D')
class GlobalAveragePooling2D(GlobalPooling2D):
"""Global average pooling operation for spatial data.
Arguments:
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
Input shape:
- If `data_format='channels_last'`:
4D tensor with shape:
`(batch_size, rows, cols, channels)`
- If `data_format='channels_first'`:
4D tensor with shape:
`(batch_size, channels, rows, cols)`
Output shape:
2D tensor with shape:
`(batch_size, channels)`
"""
def call(self, inputs):
if self.data_format == 'channels_last':
return backend.mean(inputs, axis=[1, 2])
else:
return backend.mean(inputs, axis=[2, 3])
@tf_export('keras.layers.GlobalMaxPool2D', 'keras.layers.GlobalMaxPooling2D')
class GlobalMaxPooling2D(GlobalPooling2D):
"""Global max pooling operation for spatial data.
Arguments:
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
Input shape:
- If `data_format='channels_last'`:
4D tensor with shape:
`(batch_size, rows, cols, channels)`
- If `data_format='channels_first'`:
4D tensor with shape:
`(batch_size, channels, rows, cols)`
Output shape:
2D tensor with shape:
`(batch_size, channels)`
"""
def call(self, inputs):
if self.data_format == 'channels_last':
return backend.max(inputs, axis=[1, 2])
else:
return backend.max(inputs, axis=[2, 3])
class GlobalPooling3D(Layer):
"""Abstract class for different global pooling 3D layers.
"""
def __init__(self, data_format=None, **kwargs):
super(GlobalPooling3D, self).__init__(**kwargs)
self.data_format = conv_utils.normalize_data_format(data_format)
self.input_spec = InputSpec(ndim=5)
def compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
if self.data_format == 'channels_last':
return tensor_shape.TensorShape([input_shape[0], input_shape[4]])
else:
return tensor_shape.TensorShape([input_shape[0], input_shape[1]])
def call(self, inputs):
raise NotImplementedError
def get_config(self):
config = {'data_format': self.data_format}
base_config = super(GlobalPooling3D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@tf_export('keras.layers.GlobalAveragePooling3D',
'keras.layers.GlobalAvgPool3D')
class GlobalAveragePooling3D(GlobalPooling3D):
"""Global Average pooling operation for 3D data.
Arguments:
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
while `channels_first` corresponds to inputs with shape
`(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
Input shape:
- If `data_format='channels_last'`:
5D tensor with shape:
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
- If `data_format='channels_first'`:
5D tensor with shape:
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`
Output shape:
2D tensor with shape:
`(batch_size, channels)`
"""
def call(self, inputs):
if self.data_format == 'channels_last':
return backend.mean(inputs, axis=[1, 2, 3])
else:
return backend.mean(inputs, axis=[2, 3, 4])
@tf_export('keras.layers.GlobalMaxPool3D', 'keras.layers.GlobalMaxPooling3D')
class GlobalMaxPooling3D(GlobalPooling3D):
"""Global Max pooling operation for 3D data.
Arguments:
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
while `channels_first` corresponds to inputs with shape
`(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
Input shape:
- If `data_format='channels_last'`:
5D tensor with shape:
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
- If `data_format='channels_first'`:
5D tensor with shape:
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`
Output shape:
2D tensor with shape:
`(batch_size, channels)`
"""
def call(self, inputs):
if self.data_format == 'channels_last':
return backend.max(inputs, axis=[1, 2, 3])
else:
return backend.max(inputs, axis=[2, 3, 4])
# Aliases
AvgPool1D = AveragePooling1D
MaxPool1D = MaxPooling1D
AvgPool2D = AveragePooling2D
MaxPool2D = MaxPooling2D
AvgPool3D = AveragePooling3D
MaxPool3D = MaxPooling3D
GlobalMaxPool1D = GlobalMaxPooling1D
GlobalMaxPool2D = GlobalMaxPooling2D
GlobalMaxPool3D = GlobalMaxPooling3D
GlobalAvgPool1D = GlobalAveragePooling1D
GlobalAvgPool2D = GlobalAveragePooling2D
GlobalAvgPool3D = GlobalAveragePooling3D