819 lines
30 KiB
Python
819 lines
30 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Pooling layers.
|
||
|
"""
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from tensorflow.python.framework import tensor_shape
|
||
|
from tensorflow.python.keras import backend
|
||
|
from tensorflow.python.keras.engine.base_layer import InputSpec
|
||
|
from tensorflow.python.keras.engine.base_layer import Layer
|
||
|
from tensorflow.python.keras.utils import conv_utils
|
||
|
from tensorflow.python.ops import array_ops
|
||
|
from tensorflow.python.ops import nn
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
|
||
|
class Pooling1D(Layer):
|
||
|
"""Pooling layer for arbitrary pooling functions, for 1D inputs.
|
||
|
|
||
|
This class only exists for code reuse. It will never be an exposed API.
|
||
|
|
||
|
Arguments:
|
||
|
pool_function: The pooling function to apply, e.g. `tf.nn.max_pool`.
|
||
|
pool_size: An integer or tuple/list of a single integer,
|
||
|
representing the size of the pooling window.
|
||
|
strides: An integer or tuple/list of a single integer, specifying the
|
||
|
strides of the pooling operation.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string, one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, length, channels)` while `channels_first` corresponds to
|
||
|
inputs with shape `(batch, channels, length)`.
|
||
|
name: A string, the name of the layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pool_function, pool_size, strides,
|
||
|
padding='valid', data_format=None,
|
||
|
name=None, **kwargs):
|
||
|
super(Pooling1D, self).__init__(name=name, **kwargs)
|
||
|
if data_format is None:
|
||
|
data_format = backend.image_data_format()
|
||
|
if strides is None:
|
||
|
strides = pool_size
|
||
|
self.pool_function = pool_function
|
||
|
self.pool_size = conv_utils.normalize_tuple(pool_size, 1, 'pool_size')
|
||
|
self.strides = conv_utils.normalize_tuple(strides, 1, 'strides')
|
||
|
self.padding = conv_utils.normalize_padding(padding)
|
||
|
self.data_format = conv_utils.normalize_data_format(data_format)
|
||
|
self.input_spec = InputSpec(ndim=3)
|
||
|
|
||
|
def call(self, inputs):
|
||
|
# There is no TF op for 1D pooling, hence we make the inputs 4D.
|
||
|
if self.data_format == 'channels_last':
|
||
|
# input is NWC, make it NHWC
|
||
|
inputs = array_ops.expand_dims(inputs, 1)
|
||
|
# pool on the W dim
|
||
|
pool_shape = (1, 1) + self.pool_size + (1,)
|
||
|
strides = (1, 1) + self.strides + (1,)
|
||
|
data_format = 'NHWC'
|
||
|
else:
|
||
|
# input is NCW, make it NCHW
|
||
|
inputs = array_ops.expand_dims(inputs, 2)
|
||
|
# pool on the W dim
|
||
|
pool_shape = (1, 1, 1) + self.pool_size
|
||
|
strides = (1, 1, 1) + self.strides
|
||
|
data_format = 'NCHW'
|
||
|
|
||
|
outputs = self.pool_function(
|
||
|
inputs,
|
||
|
ksize=pool_shape,
|
||
|
strides=strides,
|
||
|
padding=self.padding.upper(),
|
||
|
data_format=data_format)
|
||
|
|
||
|
if self.data_format == 'channels_last':
|
||
|
return array_ops.squeeze(outputs, 1)
|
||
|
else:
|
||
|
return array_ops.squeeze(outputs, 2)
|
||
|
|
||
|
def compute_output_shape(self, input_shape):
|
||
|
input_shape = tensor_shape.TensorShape(input_shape).as_list()
|
||
|
length = conv_utils.conv_output_length(input_shape[1], self.pool_size[0],
|
||
|
self.padding, self.strides[0])
|
||
|
return tensor_shape.TensorShape([input_shape[0], length, input_shape[2]])
|
||
|
|
||
|
def get_config(self):
|
||
|
config = {
|
||
|
'strides': self.strides,
|
||
|
'pool_size': self.pool_size,
|
||
|
'padding': self.padding
|
||
|
}
|
||
|
base_config = super(Pooling1D, self).get_config()
|
||
|
return dict(list(base_config.items()) + list(config.items()))
|
||
|
|
||
|
|
||
|
@tf_export('keras.layers.MaxPool1D', 'keras.layers.MaxPooling1D')
|
||
|
class MaxPooling1D(Pooling1D):
|
||
|
"""Max pooling operation for temporal data.
|
||
|
|
||
|
Arguments:
|
||
|
pool_size: Integer, size of the max pooling windows.
|
||
|
strides: Integer, or None. Factor by which to downscale.
|
||
|
E.g. 2 will halve the input.
|
||
|
If None, it will default to `pool_size`.
|
||
|
padding: One of `"valid"` or `"same"` (case-insensitive).
|
||
|
|
||
|
Input shape:
|
||
|
3D tensor with shape: `(batch_size, steps, features)`.
|
||
|
|
||
|
Output shape:
|
||
|
3D tensor with shape: `(batch_size, downsampled_steps, features)`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pool_size=2, strides=None,
|
||
|
padding='valid', data_format=None, **kwargs):
|
||
|
|
||
|
super(MaxPooling1D, self).__init__(
|
||
|
nn.max_pool,
|
||
|
pool_size=pool_size,
|
||
|
strides=strides,
|
||
|
padding=padding,
|
||
|
data_format=data_format,
|
||
|
**kwargs)
|
||
|
|
||
|
|
||
|
@tf_export('keras.layers.AveragePooling1D', 'keras.layers.AvgPool1D')
|
||
|
class AveragePooling1D(Pooling1D):
|
||
|
"""Average pooling for temporal data.
|
||
|
|
||
|
Arguments:
|
||
|
pool_size: Integer, size of the max pooling windows.
|
||
|
strides: Integer, or None. Factor by which to downscale.
|
||
|
E.g. 2 will halve the input.
|
||
|
If None, it will default to `pool_size`.
|
||
|
padding: One of `"valid"` or `"same"` (case-insensitive).
|
||
|
|
||
|
Input shape:
|
||
|
3D tensor with shape: `(batch_size, steps, features)`.
|
||
|
|
||
|
Output shape:
|
||
|
3D tensor with shape: `(batch_size, downsampled_steps, features)`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pool_size=2, strides=None,
|
||
|
padding='valid', data_format=None, **kwargs):
|
||
|
super(AveragePooling1D, self).__init__(
|
||
|
nn.avg_pool,
|
||
|
pool_size=pool_size,
|
||
|
strides=strides,
|
||
|
padding=padding,
|
||
|
data_format=data_format,
|
||
|
**kwargs)
|
||
|
|
||
|
|
||
|
class Pooling2D(Layer):
|
||
|
"""Pooling layer for arbitrary pooling functions, for 2D inputs (e.g. images).
|
||
|
|
||
|
This class only exists for code reuse. It will never be an exposed API.
|
||
|
|
||
|
Arguments:
|
||
|
pool_function: The pooling function to apply, e.g. `tf.nn.max_pool`.
|
||
|
pool_size: An integer or tuple/list of 2 integers: (pool_height, pool_width)
|
||
|
specifying the size of the pooling window.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
strides: An integer or tuple/list of 2 integers,
|
||
|
specifying the strides of the pooling operation.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string, one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, height, width, channels)` while `channels_first` corresponds to
|
||
|
inputs with shape `(batch, channels, height, width)`.
|
||
|
name: A string, the name of the layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pool_function, pool_size, strides,
|
||
|
padding='valid', data_format=None,
|
||
|
name=None, **kwargs):
|
||
|
super(Pooling2D, self).__init__(name=name, **kwargs)
|
||
|
if data_format is None:
|
||
|
data_format = backend.image_data_format()
|
||
|
if strides is None:
|
||
|
strides = pool_size
|
||
|
self.pool_function = pool_function
|
||
|
self.pool_size = conv_utils.normalize_tuple(pool_size, 2, 'pool_size')
|
||
|
self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
|
||
|
self.padding = conv_utils.normalize_padding(padding)
|
||
|
self.data_format = conv_utils.normalize_data_format(data_format)
|
||
|
self.input_spec = InputSpec(ndim=4)
|
||
|
|
||
|
def call(self, inputs):
|
||
|
if self.data_format == 'channels_last':
|
||
|
pool_shape = (1,) + self.pool_size + (1,)
|
||
|
strides = (1,) + self.strides + (1,)
|
||
|
else:
|
||
|
pool_shape = (1, 1) + self.pool_size
|
||
|
strides = (1, 1) + self.strides
|
||
|
outputs = self.pool_function(
|
||
|
inputs,
|
||
|
ksize=pool_shape,
|
||
|
strides=strides,
|
||
|
padding=self.padding.upper(),
|
||
|
data_format=conv_utils.convert_data_format(self.data_format, 4))
|
||
|
return outputs
|
||
|
|
||
|
def compute_output_shape(self, input_shape):
|
||
|
input_shape = tensor_shape.TensorShape(input_shape).as_list()
|
||
|
if self.data_format == 'channels_first':
|
||
|
rows = input_shape[2]
|
||
|
cols = input_shape[3]
|
||
|
else:
|
||
|
rows = input_shape[1]
|
||
|
cols = input_shape[2]
|
||
|
rows = conv_utils.conv_output_length(rows, self.pool_size[0], self.padding,
|
||
|
self.strides[0])
|
||
|
cols = conv_utils.conv_output_length(cols, self.pool_size[1], self.padding,
|
||
|
self.strides[1])
|
||
|
if self.data_format == 'channels_first':
|
||
|
return tensor_shape.TensorShape(
|
||
|
[input_shape[0], input_shape[1], rows, cols])
|
||
|
else:
|
||
|
return tensor_shape.TensorShape(
|
||
|
[input_shape[0], rows, cols, input_shape[3]])
|
||
|
|
||
|
def get_config(self):
|
||
|
config = {
|
||
|
'pool_size': self.pool_size,
|
||
|
'padding': self.padding,
|
||
|
'strides': self.strides,
|
||
|
'data_format': self.data_format
|
||
|
}
|
||
|
base_config = super(Pooling2D, self).get_config()
|
||
|
return dict(list(base_config.items()) + list(config.items()))
|
||
|
|
||
|
|
||
|
@tf_export('keras.layers.MaxPool2D', 'keras.layers.MaxPooling2D')
|
||
|
class MaxPooling2D(Pooling2D):
|
||
|
"""Max pooling operation for spatial data.
|
||
|
|
||
|
Arguments:
|
||
|
pool_size: integer or tuple of 2 integers,
|
||
|
factors by which to downscale (vertical, horizontal).
|
||
|
(2, 2) will halve the input in both spatial dimension.
|
||
|
If only one integer is specified, the same window length
|
||
|
will be used for both dimensions.
|
||
|
strides: Integer, tuple of 2 integers, or None.
|
||
|
Strides values.
|
||
|
If None, it will default to `pool_size`.
|
||
|
padding: One of `"valid"` or `"same"` (case-insensitive).
|
||
|
data_format: A string,
|
||
|
one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, height, width, channels)` while `channels_first`
|
||
|
corresponds to inputs with shape
|
||
|
`(batch, channels, height, width)`.
|
||
|
It defaults to the `image_data_format` value found in your
|
||
|
Keras config file at `~/.keras/keras.json`.
|
||
|
If you never set it, then it will be "channels_last".
|
||
|
|
||
|
Input shape:
|
||
|
- If `data_format='channels_last'`:
|
||
|
4D tensor with shape:
|
||
|
`(batch_size, rows, cols, channels)`
|
||
|
- If `data_format='channels_first'`:
|
||
|
4D tensor with shape:
|
||
|
`(batch_size, channels, rows, cols)`
|
||
|
|
||
|
Output shape:
|
||
|
- If `data_format='channels_last'`:
|
||
|
4D tensor with shape:
|
||
|
`(batch_size, pooled_rows, pooled_cols, channels)`
|
||
|
- If `data_format='channels_first'`:
|
||
|
4D tensor with shape:
|
||
|
`(batch_size, channels, pooled_rows, pooled_cols)`
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
pool_size=(2, 2),
|
||
|
strides=None,
|
||
|
padding='valid',
|
||
|
data_format=None,
|
||
|
**kwargs):
|
||
|
super(MaxPooling2D, self).__init__(
|
||
|
nn.max_pool,
|
||
|
pool_size=pool_size, strides=strides,
|
||
|
padding=padding, data_format=data_format, **kwargs)
|
||
|
|
||
|
|
||
|
@tf_export('keras.layers.AveragePooling2D', 'keras.layers.AvgPool2D')
|
||
|
class AveragePooling2D(Pooling2D):
|
||
|
"""Average pooling operation for spatial data.
|
||
|
|
||
|
Arguments:
|
||
|
pool_size: integer or tuple of 2 integers,
|
||
|
factors by which to downscale (vertical, horizontal).
|
||
|
(2, 2) will halve the input in both spatial dimension.
|
||
|
If only one integer is specified, the same window length
|
||
|
will be used for both dimensions.
|
||
|
strides: Integer, tuple of 2 integers, or None.
|
||
|
Strides values.
|
||
|
If None, it will default to `pool_size`.
|
||
|
padding: One of `"valid"` or `"same"` (case-insensitive).
|
||
|
data_format: A string,
|
||
|
one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, height, width, channels)` while `channels_first`
|
||
|
corresponds to inputs with shape
|
||
|
`(batch, channels, height, width)`.
|
||
|
It defaults to the `image_data_format` value found in your
|
||
|
Keras config file at `~/.keras/keras.json`.
|
||
|
If you never set it, then it will be "channels_last".
|
||
|
|
||
|
Input shape:
|
||
|
- If `data_format='channels_last'`:
|
||
|
4D tensor with shape:
|
||
|
`(batch_size, rows, cols, channels)`
|
||
|
- If `data_format='channels_first'`:
|
||
|
4D tensor with shape:
|
||
|
`(batch_size, channels, rows, cols)`
|
||
|
|
||
|
Output shape:
|
||
|
- If `data_format='channels_last'`:
|
||
|
4D tensor with shape:
|
||
|
`(batch_size, pooled_rows, pooled_cols, channels)`
|
||
|
- If `data_format='channels_first'`:
|
||
|
4D tensor with shape:
|
||
|
`(batch_size, channels, pooled_rows, pooled_cols)`
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
pool_size=(2, 2),
|
||
|
strides=None,
|
||
|
padding='valid',
|
||
|
data_format=None,
|
||
|
**kwargs):
|
||
|
super(AveragePooling2D, self).__init__(
|
||
|
nn.avg_pool,
|
||
|
pool_size=pool_size, strides=strides,
|
||
|
padding=padding, data_format=data_format, **kwargs)
|
||
|
|
||
|
|
||
|
class Pooling3D(Layer):
|
||
|
"""Pooling layer for arbitrary pooling functions, for 3D inputs.
|
||
|
|
||
|
This class only exists for code reuse. It will never be an exposed API.
|
||
|
|
||
|
Arguments:
|
||
|
pool_function: The pooling function to apply, e.g. `tf.nn.max_pool`.
|
||
|
pool_size: An integer or tuple/list of 3 integers:
|
||
|
(pool_depth, pool_height, pool_width)
|
||
|
specifying the size of the pooling window.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
strides: An integer or tuple/list of 3 integers,
|
||
|
specifying the strides of the pooling operation.
|
||
|
Can be a single integer to specify the same value for
|
||
|
all spatial dimensions.
|
||
|
padding: A string. The padding method, either 'valid' or 'same'.
|
||
|
Case-insensitive.
|
||
|
data_format: A string, one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, depth, height, width, channels)`
|
||
|
while `channels_first` corresponds to
|
||
|
inputs with shape `(batch, channels, depth, height, width)`.
|
||
|
name: A string, the name of the layer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pool_function, pool_size, strides,
|
||
|
padding='valid', data_format='channels_last',
|
||
|
name=None, **kwargs):
|
||
|
super(Pooling3D, self).__init__(name=name, **kwargs)
|
||
|
if data_format is None:
|
||
|
data_format = backend.image_data_format()
|
||
|
if strides is None:
|
||
|
strides = pool_size
|
||
|
self.pool_function = pool_function
|
||
|
self.pool_size = conv_utils.normalize_tuple(pool_size, 3, 'pool_size')
|
||
|
self.strides = conv_utils.normalize_tuple(strides, 3, 'strides')
|
||
|
self.padding = conv_utils.normalize_padding(padding)
|
||
|
self.data_format = conv_utils.normalize_data_format(data_format)
|
||
|
self.input_spec = InputSpec(ndim=5)
|
||
|
|
||
|
def call(self, inputs):
|
||
|
pool_shape = (1,) + self.pool_size + (1,)
|
||
|
strides = (1,) + self.strides + (1,)
|
||
|
|
||
|
if self.data_format == 'channels_first':
|
||
|
# TF does not support `channels_first` with 3D pooling operations,
|
||
|
# so we must handle this case manually.
|
||
|
# TODO(fchollet): remove this when TF pooling is feature-complete.
|
||
|
inputs = array_ops.transpose(inputs, (0, 2, 3, 4, 1))
|
||
|
|
||
|
outputs = self.pool_function(
|
||
|
inputs,
|
||
|
ksize=pool_shape,
|
||
|
strides=strides,
|
||
|
padding=self.padding.upper())
|
||
|
|
||
|
if self.data_format == 'channels_first':
|
||
|
outputs = array_ops.transpose(outputs, (0, 4, 1, 2, 3))
|
||
|
return outputs
|
||
|
|
||
|
def compute_output_shape(self, input_shape):
|
||
|
input_shape = tensor_shape.TensorShape(input_shape).as_list()
|
||
|
if self.data_format == 'channels_first':
|
||
|
len_dim1 = input_shape[2]
|
||
|
len_dim2 = input_shape[3]
|
||
|
len_dim3 = input_shape[4]
|
||
|
else:
|
||
|
len_dim1 = input_shape[1]
|
||
|
len_dim2 = input_shape[2]
|
||
|
len_dim3 = input_shape[3]
|
||
|
len_dim1 = conv_utils.conv_output_length(len_dim1, self.pool_size[0],
|
||
|
self.padding, self.strides[0])
|
||
|
len_dim2 = conv_utils.conv_output_length(len_dim2, self.pool_size[1],
|
||
|
self.padding, self.strides[1])
|
||
|
len_dim3 = conv_utils.conv_output_length(len_dim3, self.pool_size[2],
|
||
|
self.padding, self.strides[2])
|
||
|
if self.data_format == 'channels_first':
|
||
|
return tensor_shape.TensorShape(
|
||
|
[input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3])
|
||
|
else:
|
||
|
return tensor_shape.TensorShape(
|
||
|
[input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]])
|
||
|
|
||
|
def get_config(self):
|
||
|
config = {
|
||
|
'pool_size': self.pool_size,
|
||
|
'padding': self.padding,
|
||
|
'strides': self.strides,
|
||
|
'data_format': self.data_format
|
||
|
}
|
||
|
base_config = super(Pooling3D, self).get_config()
|
||
|
return dict(list(base_config.items()) + list(config.items()))
|
||
|
|
||
|
|
||
|
@tf_export('keras.layers.MaxPool3D', 'keras.layers.MaxPooling3D')
|
||
|
class MaxPooling3D(Pooling3D):
|
||
|
"""Max pooling operation for 3D data (spatial or spatio-temporal).
|
||
|
|
||
|
Arguments:
|
||
|
pool_size: tuple of 3 integers,
|
||
|
factors by which to downscale (dim1, dim2, dim3).
|
||
|
(2, 2, 2) will halve the size of the 3D input in each dimension.
|
||
|
strides: tuple of 3 integers, or None. Strides values.
|
||
|
padding: One of `"valid"` or `"same"` (case-insensitive).
|
||
|
data_format: A string,
|
||
|
one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
|
||
|
while `channels_first` corresponds to inputs with shape
|
||
|
`(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
|
||
|
It defaults to the `image_data_format` value found in your
|
||
|
Keras config file at `~/.keras/keras.json`.
|
||
|
If you never set it, then it will be "channels_last".
|
||
|
|
||
|
Input shape:
|
||
|
- If `data_format='channels_last'`:
|
||
|
5D tensor with shape:
|
||
|
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
|
||
|
- If `data_format='channels_first'`:
|
||
|
5D tensor with shape:
|
||
|
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`
|
||
|
|
||
|
Output shape:
|
||
|
- If `data_format='channels_last'`:
|
||
|
5D tensor with shape:
|
||
|
`(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)`
|
||
|
- If `data_format='channels_first'`:
|
||
|
5D tensor with shape:
|
||
|
`(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)`
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
pool_size=(2, 2, 2),
|
||
|
strides=None,
|
||
|
padding='valid',
|
||
|
data_format=None,
|
||
|
**kwargs):
|
||
|
super(MaxPooling3D, self).__init__(
|
||
|
nn.max_pool3d,
|
||
|
pool_size=pool_size, strides=strides,
|
||
|
padding=padding, data_format=data_format, **kwargs)
|
||
|
|
||
|
|
||
|
@tf_export('keras.layers.AveragePooling3D', 'keras.layers.AvgPool3D')
|
||
|
class AveragePooling3D(Pooling3D):
|
||
|
"""Average pooling operation for 3D data (spatial or spatio-temporal).
|
||
|
|
||
|
Arguments:
|
||
|
pool_size: tuple of 3 integers,
|
||
|
factors by which to downscale (dim1, dim2, dim3).
|
||
|
(2, 2, 2) will halve the size of the 3D input in each dimension.
|
||
|
strides: tuple of 3 integers, or None. Strides values.
|
||
|
padding: One of `"valid"` or `"same"` (case-insensitive).
|
||
|
data_format: A string,
|
||
|
one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
|
||
|
while `channels_first` corresponds to inputs with shape
|
||
|
`(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
|
||
|
It defaults to the `image_data_format` value found in your
|
||
|
Keras config file at `~/.keras/keras.json`.
|
||
|
If you never set it, then it will be "channels_last".
|
||
|
|
||
|
Input shape:
|
||
|
- If `data_format='channels_last'`:
|
||
|
5D tensor with shape:
|
||
|
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
|
||
|
- If `data_format='channels_first'`:
|
||
|
5D tensor with shape:
|
||
|
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`
|
||
|
|
||
|
Output shape:
|
||
|
- If `data_format='channels_last'`:
|
||
|
5D tensor with shape:
|
||
|
`(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)`
|
||
|
- If `data_format='channels_first'`:
|
||
|
5D tensor with shape:
|
||
|
`(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)`
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
pool_size=(2, 2, 2),
|
||
|
strides=None,
|
||
|
padding='valid',
|
||
|
data_format=None,
|
||
|
**kwargs):
|
||
|
super(AveragePooling3D, self).__init__(
|
||
|
nn.avg_pool3d,
|
||
|
pool_size=pool_size, strides=strides,
|
||
|
padding=padding, data_format=data_format, **kwargs)
|
||
|
|
||
|
|
||
|
class GlobalPooling1D(Layer):
|
||
|
"""Abstract class for different global pooling 1D layers.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, **kwargs):
|
||
|
super(GlobalPooling1D, self).__init__(**kwargs)
|
||
|
self.input_spec = InputSpec(ndim=3)
|
||
|
|
||
|
def compute_output_shape(self, input_shape):
|
||
|
input_shape = tensor_shape.TensorShape(input_shape).as_list()
|
||
|
return tensor_shape.TensorShape([input_shape[0], input_shape[2]])
|
||
|
|
||
|
def call(self, inputs):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
@tf_export('keras.layers.GlobalAveragePooling1D',
|
||
|
'keras.layers.GlobalAvgPool1D')
|
||
|
class GlobalAveragePooling1D(GlobalPooling1D):
|
||
|
"""Global average pooling operation for temporal data.
|
||
|
|
||
|
Input shape:
|
||
|
3D tensor with shape: `(batch_size, steps, features)`.
|
||
|
|
||
|
Output shape:
|
||
|
2D tensor with shape:
|
||
|
`(batch_size, features)`
|
||
|
"""
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return backend.mean(inputs, axis=1)
|
||
|
|
||
|
|
||
|
@tf_export('keras.layers.GlobalMaxPool1D', 'keras.layers.GlobalMaxPooling1D')
|
||
|
class GlobalMaxPooling1D(GlobalPooling1D):
|
||
|
"""Global max pooling operation for temporal data.
|
||
|
|
||
|
Input shape:
|
||
|
3D tensor with shape: `(batch_size, steps, features)`.
|
||
|
|
||
|
Output shape:
|
||
|
2D tensor with shape:
|
||
|
`(batch_size, features)`
|
||
|
"""
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return backend.max(inputs, axis=1)
|
||
|
|
||
|
|
||
|
class GlobalPooling2D(Layer):
|
||
|
"""Abstract class for different global pooling 2D layers.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, data_format=None, **kwargs):
|
||
|
super(GlobalPooling2D, self).__init__(**kwargs)
|
||
|
self.data_format = conv_utils.normalize_data_format(data_format)
|
||
|
self.input_spec = InputSpec(ndim=4)
|
||
|
|
||
|
def compute_output_shape(self, input_shape):
|
||
|
input_shape = tensor_shape.TensorShape(input_shape).as_list()
|
||
|
if self.data_format == 'channels_last':
|
||
|
return tensor_shape.TensorShape([input_shape[0], input_shape[3]])
|
||
|
else:
|
||
|
return tensor_shape.TensorShape([input_shape[0], input_shape[1]])
|
||
|
|
||
|
def call(self, inputs):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def get_config(self):
|
||
|
config = {'data_format': self.data_format}
|
||
|
base_config = super(GlobalPooling2D, self).get_config()
|
||
|
return dict(list(base_config.items()) + list(config.items()))
|
||
|
|
||
|
|
||
|
@tf_export('keras.layers.GlobalAveragePooling2D',
|
||
|
'keras.layers.GlobalAvgPool2D')
|
||
|
class GlobalAveragePooling2D(GlobalPooling2D):
|
||
|
"""Global average pooling operation for spatial data.
|
||
|
|
||
|
Arguments:
|
||
|
data_format: A string,
|
||
|
one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, height, width, channels)` while `channels_first`
|
||
|
corresponds to inputs with shape
|
||
|
`(batch, channels, height, width)`.
|
||
|
It defaults to the `image_data_format` value found in your
|
||
|
Keras config file at `~/.keras/keras.json`.
|
||
|
If you never set it, then it will be "channels_last".
|
||
|
|
||
|
Input shape:
|
||
|
- If `data_format='channels_last'`:
|
||
|
4D tensor with shape:
|
||
|
`(batch_size, rows, cols, channels)`
|
||
|
- If `data_format='channels_first'`:
|
||
|
4D tensor with shape:
|
||
|
`(batch_size, channels, rows, cols)`
|
||
|
|
||
|
Output shape:
|
||
|
2D tensor with shape:
|
||
|
`(batch_size, channels)`
|
||
|
"""
|
||
|
|
||
|
def call(self, inputs):
|
||
|
if self.data_format == 'channels_last':
|
||
|
return backend.mean(inputs, axis=[1, 2])
|
||
|
else:
|
||
|
return backend.mean(inputs, axis=[2, 3])
|
||
|
|
||
|
|
||
|
@tf_export('keras.layers.GlobalMaxPool2D', 'keras.layers.GlobalMaxPooling2D')
|
||
|
class GlobalMaxPooling2D(GlobalPooling2D):
|
||
|
"""Global max pooling operation for spatial data.
|
||
|
|
||
|
Arguments:
|
||
|
data_format: A string,
|
||
|
one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, height, width, channels)` while `channels_first`
|
||
|
corresponds to inputs with shape
|
||
|
`(batch, channels, height, width)`.
|
||
|
It defaults to the `image_data_format` value found in your
|
||
|
Keras config file at `~/.keras/keras.json`.
|
||
|
If you never set it, then it will be "channels_last".
|
||
|
|
||
|
Input shape:
|
||
|
- If `data_format='channels_last'`:
|
||
|
4D tensor with shape:
|
||
|
`(batch_size, rows, cols, channels)`
|
||
|
- If `data_format='channels_first'`:
|
||
|
4D tensor with shape:
|
||
|
`(batch_size, channels, rows, cols)`
|
||
|
|
||
|
Output shape:
|
||
|
2D tensor with shape:
|
||
|
`(batch_size, channels)`
|
||
|
"""
|
||
|
|
||
|
def call(self, inputs):
|
||
|
if self.data_format == 'channels_last':
|
||
|
return backend.max(inputs, axis=[1, 2])
|
||
|
else:
|
||
|
return backend.max(inputs, axis=[2, 3])
|
||
|
|
||
|
|
||
|
class GlobalPooling3D(Layer):
|
||
|
"""Abstract class for different global pooling 3D layers.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, data_format=None, **kwargs):
|
||
|
super(GlobalPooling3D, self).__init__(**kwargs)
|
||
|
self.data_format = conv_utils.normalize_data_format(data_format)
|
||
|
self.input_spec = InputSpec(ndim=5)
|
||
|
|
||
|
def compute_output_shape(self, input_shape):
|
||
|
input_shape = tensor_shape.TensorShape(input_shape).as_list()
|
||
|
if self.data_format == 'channels_last':
|
||
|
return tensor_shape.TensorShape([input_shape[0], input_shape[4]])
|
||
|
else:
|
||
|
return tensor_shape.TensorShape([input_shape[0], input_shape[1]])
|
||
|
|
||
|
def call(self, inputs):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def get_config(self):
|
||
|
config = {'data_format': self.data_format}
|
||
|
base_config = super(GlobalPooling3D, self).get_config()
|
||
|
return dict(list(base_config.items()) + list(config.items()))
|
||
|
|
||
|
|
||
|
@tf_export('keras.layers.GlobalAveragePooling3D',
|
||
|
'keras.layers.GlobalAvgPool3D')
|
||
|
class GlobalAveragePooling3D(GlobalPooling3D):
|
||
|
"""Global Average pooling operation for 3D data.
|
||
|
|
||
|
Arguments:
|
||
|
data_format: A string,
|
||
|
one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
|
||
|
while `channels_first` corresponds to inputs with shape
|
||
|
`(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
|
||
|
It defaults to the `image_data_format` value found in your
|
||
|
Keras config file at `~/.keras/keras.json`.
|
||
|
If you never set it, then it will be "channels_last".
|
||
|
|
||
|
Input shape:
|
||
|
- If `data_format='channels_last'`:
|
||
|
5D tensor with shape:
|
||
|
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
|
||
|
- If `data_format='channels_first'`:
|
||
|
5D tensor with shape:
|
||
|
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`
|
||
|
|
||
|
Output shape:
|
||
|
2D tensor with shape:
|
||
|
`(batch_size, channels)`
|
||
|
"""
|
||
|
|
||
|
def call(self, inputs):
|
||
|
if self.data_format == 'channels_last':
|
||
|
return backend.mean(inputs, axis=[1, 2, 3])
|
||
|
else:
|
||
|
return backend.mean(inputs, axis=[2, 3, 4])
|
||
|
|
||
|
|
||
|
@tf_export('keras.layers.GlobalMaxPool3D', 'keras.layers.GlobalMaxPooling3D')
|
||
|
class GlobalMaxPooling3D(GlobalPooling3D):
|
||
|
"""Global Max pooling operation for 3D data.
|
||
|
|
||
|
Arguments:
|
||
|
data_format: A string,
|
||
|
one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
|
||
|
while `channels_first` corresponds to inputs with shape
|
||
|
`(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
|
||
|
It defaults to the `image_data_format` value found in your
|
||
|
Keras config file at `~/.keras/keras.json`.
|
||
|
If you never set it, then it will be "channels_last".
|
||
|
|
||
|
Input shape:
|
||
|
- If `data_format='channels_last'`:
|
||
|
5D tensor with shape:
|
||
|
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
|
||
|
- If `data_format='channels_first'`:
|
||
|
5D tensor with shape:
|
||
|
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`
|
||
|
|
||
|
Output shape:
|
||
|
2D tensor with shape:
|
||
|
`(batch_size, channels)`
|
||
|
"""
|
||
|
|
||
|
def call(self, inputs):
|
||
|
if self.data_format == 'channels_last':
|
||
|
return backend.max(inputs, axis=[1, 2, 3])
|
||
|
else:
|
||
|
return backend.max(inputs, axis=[2, 3, 4])
|
||
|
|
||
|
|
||
|
# Aliases
|
||
|
|
||
|
AvgPool1D = AveragePooling1D
|
||
|
MaxPool1D = MaxPooling1D
|
||
|
AvgPool2D = AveragePooling2D
|
||
|
MaxPool2D = MaxPooling2D
|
||
|
AvgPool3D = AveragePooling3D
|
||
|
MaxPool3D = MaxPooling3D
|
||
|
GlobalMaxPool1D = GlobalMaxPooling1D
|
||
|
GlobalMaxPool2D = GlobalMaxPooling2D
|
||
|
GlobalMaxPool3D = GlobalMaxPooling3D
|
||
|
GlobalAvgPool1D = GlobalAveragePooling1D
|
||
|
GlobalAvgPool2D = GlobalAveragePooling2D
|
||
|
GlobalAvgPool3D = GlobalAveragePooling3D
|