laywerrobot/lib/python3.6/site-packages/tensorflow/python/client/timeline.py
2020-08-27 21:55:39 +02:00

635 lines
24 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Timeline visualization for TensorFlow using Chrome Trace Format."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import copy
import json
import re
# The timeline target is usually imported as part of BUILD target
# "platform_test", which includes also includes the "platform"
# dependency. This is why the logging import here is okay.
from tensorflow.python.platform import tf_logging as logging
class AllocationMaximum(collections.namedtuple(
'AllocationMaximum', ('timestamp', 'num_bytes', 'tensors'))):
"""Stores the maximum allocation for a given allocator within the timelne.
Parameters:
timestamp: `tensorflow::Env::NowMicros()` when this maximum was reached.
num_bytes: the total memory used at this time.
tensors: the set of tensors allocated at this time.
"""
pass
class StepStatsAnalysis(collections.namedtuple(
'StepStatsAnalysis', ('chrome_trace', 'allocator_maximums'))):
"""Stores the step stats analysis output.
Parameters:
chrome_trace: A dict containing the chrome trace analysis.
allocator_maximums: A dict mapping allocator names to AllocationMaximum.
"""
pass
class _ChromeTraceFormatter(object):
"""A helper class for generating traces in Chrome Trace Format."""
def __init__(self, show_memory=False):
"""Constructs a new Chrome Trace formatter."""
self._show_memory = show_memory
self._events = []
self._metadata = []
def _create_event(self, ph, category, name, pid, tid, timestamp):
"""Creates a new Chrome Trace event.
For details of the file format, see:
https://github.com/catapult-project/catapult/blob/master/tracing/README.md
Args:
ph: The type of event - usually a single character.
category: The event category as a string.
name: The event name as a string.
pid: Identifier of the process generating this event as an integer.
tid: Identifier of the thread generating this event as an integer.
timestamp: The timestamp of this event as a long integer.
Returns:
A JSON compatible event object.
"""
event = {}
event['ph'] = ph
event['cat'] = category
event['name'] = name
event['pid'] = pid
event['tid'] = tid
event['ts'] = timestamp
return event
def emit_pid(self, name, pid):
"""Adds a process metadata event to the trace.
Args:
name: The process name as a string.
pid: Identifier of the process as an integer.
"""
event = {}
event['name'] = 'process_name'
event['ph'] = 'M'
event['pid'] = pid
event['args'] = {'name': name}
self._metadata.append(event)
def emit_tid(self, name, pid, tid):
"""Adds a thread metadata event to the trace.
Args:
name: The thread name as a string.
pid: Identifier of the process as an integer.
tid: Identifier of the thread as an integer.
"""
event = {}
event['name'] = 'thread_name'
event['ph'] = 'M'
event['pid'] = pid
event['tid'] = tid
event['args'] = {'name': name}
self._metadata.append(event)
def emit_region(self, timestamp, duration, pid, tid, category, name, args):
"""Adds a region event to the trace.
Args:
timestamp: The start timestamp of this region as a long integer.
duration: The duration of this region as a long integer.
pid: Identifier of the process generating this event as an integer.
tid: Identifier of the thread generating this event as an integer.
category: The event category as a string.
name: The event name as a string.
args: A JSON-compatible dictionary of event arguments.
"""
event = self._create_event('X', category, name, pid, tid, timestamp)
event['dur'] = duration
event['args'] = args
self._events.append(event)
def emit_obj_create(self, category, name, timestamp, pid, tid, object_id):
"""Adds an object creation event to the trace.
Args:
category: The event category as a string.
name: The event name as a string.
timestamp: The timestamp of this event as a long integer.
pid: Identifier of the process generating this event as an integer.
tid: Identifier of the thread generating this event as an integer.
object_id: Identifier of the object as an integer.
"""
event = self._create_event('N', category, name, pid, tid, timestamp)
event['id'] = object_id
self._events.append(event)
def emit_obj_delete(self, category, name, timestamp, pid, tid, object_id):
"""Adds an object deletion event to the trace.
Args:
category: The event category as a string.
name: The event name as a string.
timestamp: The timestamp of this event as a long integer.
pid: Identifier of the process generating this event as an integer.
tid: Identifier of the thread generating this event as an integer.
object_id: Identifier of the object as an integer.
"""
event = self._create_event('D', category, name, pid, tid, timestamp)
event['id'] = object_id
self._events.append(event)
def emit_obj_snapshot(self, category, name, timestamp, pid, tid, object_id,
snapshot):
"""Adds an object snapshot event to the trace.
Args:
category: The event category as a string.
name: The event name as a string.
timestamp: The timestamp of this event as a long integer.
pid: Identifier of the process generating this event as an integer.
tid: Identifier of the thread generating this event as an integer.
object_id: Identifier of the object as an integer.
snapshot: A JSON-compatible representation of the object.
"""
event = self._create_event('O', category, name, pid, tid, timestamp)
event['id'] = object_id
event['args'] = {'snapshot': snapshot}
self._events.append(event)
def emit_flow_start(self, name, timestamp, pid, tid, flow_id):
"""Adds a flow start event to the trace.
When matched with a flow end event (with the same 'flow_id') this will
cause the trace viewer to draw an arrow between the start and end events.
Args:
name: The event name as a string.
timestamp: The timestamp of this event as a long integer.
pid: Identifier of the process generating this event as an integer.
tid: Identifier of the thread generating this event as an integer.
flow_id: Identifier of the flow as an integer.
"""
event = self._create_event('s', 'DataFlow', name, pid, tid, timestamp)
event['id'] = flow_id
self._events.append(event)
def emit_flow_end(self, name, timestamp, pid, tid, flow_id):
"""Adds a flow end event to the trace.
When matched with a flow start event (with the same 'flow_id') this will
cause the trace viewer to draw an arrow between the start and end events.
Args:
name: The event name as a string.
timestamp: The timestamp of this event as a long integer.
pid: Identifier of the process generating this event as an integer.
tid: Identifier of the thread generating this event as an integer.
flow_id: Identifier of the flow as an integer.
"""
event = self._create_event('t', 'DataFlow', name, pid, tid, timestamp)
event['id'] = flow_id
self._events.append(event)
def emit_counter(self, category, name, pid, timestamp, counter, value):
"""Emits a record for a single counter.
Args:
category: The event category as a string.
name: The event name as a string.
pid: Identifier of the process generating this event as an integer.
timestamp: The timestamp of this event as a long integer.
counter: Name of the counter as a string.
value: Value of the counter as an integer.
"""
event = self._create_event('C', category, name, pid, 0, timestamp)
event['args'] = {counter: value}
self._events.append(event)
def emit_counters(self, category, name, pid, timestamp, counters):
"""Emits a counter record for the dictionary 'counters'.
Args:
category: The event category as a string.
name: The event name as a string.
pid: Identifier of the process generating this event as an integer.
timestamp: The timestamp of this event as a long integer.
counters: Dictionary of counter values.
"""
event = self._create_event('C', category, name, pid, 0, timestamp)
event['args'] = counters.copy()
self._events.append(event)
def format_to_string(self, pretty=False):
"""Formats the chrome trace to a string.
Args:
pretty: (Optional.) If True, produce human-readable JSON output.
Returns:
A JSON-formatted string in Chrome Trace format.
"""
trace = {}
trace['traceEvents'] = self._metadata + self._events
if pretty:
return json.dumps(trace, indent=4, separators=(',', ': '))
else:
return json.dumps(trace, separators=(',', ':'))
class _TensorTracker(object):
"""An internal class to track the lifetime of a Tensor."""
def __init__(self, name, object_id, timestamp, pid, allocator, num_bytes):
"""Creates an object to track tensor references.
This class is not thread safe and is intended only for internal use by
the 'Timeline' class in this file.
Args:
name: The name of the Tensor as a string.
object_id: Chrome Trace object identifier assigned for this Tensor.
timestamp: The creation timestamp of this event as a long integer.
pid: Process identifier of the associated device, as an integer.
allocator: Name of the allocator used to create the Tensor.
num_bytes: Number of bytes allocated (long integer).
Returns:
A 'TensorTracker' object.
"""
self._name = name
self._pid = pid
self._object_id = object_id
self._create_time = timestamp
self._allocator = allocator
self._num_bytes = num_bytes
self._ref_times = []
self._unref_times = []
@property
def name(self):
"""Name of this tensor."""
return self._name
@property
def pid(self):
"""ID of the process which created this tensor (an integer)."""
return self._pid
@property
def create_time(self):
"""Timestamp when this tensor was created (long integer)."""
return self._create_time
@property
def object_id(self):
"""Returns the object identifier of this tensor (integer)."""
return self._object_id
@property
def num_bytes(self):
"""Size of this tensor in bytes (long integer)."""
return self._num_bytes
@property
def allocator(self):
"""Name of the allocator used to create this tensor (string)."""
return self._allocator
@property
def last_unref(self):
"""Last unreference timestamp of this tensor (long integer)."""
return max(self._unref_times)
def add_ref(self, timestamp):
"""Adds a reference to this tensor with the specified timestamp.
Args:
timestamp: Timestamp of object reference as an integer.
"""
self._ref_times.append(timestamp)
def add_unref(self, timestamp):
"""Adds an unref to this tensor with the specified timestamp.
Args:
timestamp: Timestamp of object unreference as an integer.
"""
self._unref_times.append(timestamp)
class Timeline(object):
"""A class for visualizing execution timelines of TensorFlow steps."""
def __init__(self, step_stats, graph=None):
"""Constructs a new Timeline.
A 'Timeline' is used for visualizing the execution of a TensorFlow
computation. It shows the timings and concurrency of execution at
the granularity of TensorFlow Ops.
This class is not thread safe.
Args:
step_stats: The 'StepStats' proto recording execution times.
graph: (Optional) The 'Graph' that was executed.
"""
self._step_stats = step_stats
self._graph = graph
self._chrome_trace = _ChromeTraceFormatter()
self._next_pid = 0
self._device_pids = {} # device name -> pid for compute activity.
self._tensor_pids = {} # device name -> pid for tensors.
self._tensors = {} # tensor_name -> TensorTracker
self._next_flow_id = 0
self._flow_starts = {} # tensor_name -> (timestamp, pid, tid)
self._alloc_times = {} # tensor_name -> ( time, allocator, size )
self._allocator_maximums = {} # allocator name => maximum bytes long
def _alloc_pid(self):
"""Allocate a process Id."""
pid = self._next_pid
self._next_pid += 1
return pid
def _alloc_flow_id(self):
"""Allocate a flow Id."""
flow_id = self._next_flow_id
self._next_flow_id += 1
return flow_id
def _parse_op_label(self, label):
"""Parses the fields in a node timeline label."""
# Expects labels of the form: name = op(arg, arg, ...).
match = re.match(r'(.*) = (.*)\((.*)\)', label)
if match is None:
return 'unknown', 'unknown', []
nn, op, inputs = match.groups()
if not inputs:
inputs = []
else:
inputs = inputs.split(', ')
return nn, op, inputs
def _assign_lanes(self):
"""Assigns non-overlapping lanes for the activities on each device."""
for device_stats in self._step_stats.dev_stats:
# TODO(pbar): Genuine thread IDs in NodeExecStats might be helpful.
lanes = [0]
for ns in device_stats.node_stats:
l = -1
for (i, lts) in enumerate(lanes):
if ns.all_start_micros > lts:
l = i
lanes[l] = ns.all_start_micros + ns.all_end_rel_micros
break
if l < 0:
l = len(lanes)
lanes.append(ns.all_start_micros + ns.all_end_rel_micros)
ns.thread_id = l
def _emit_op(self, nodestats, pid, is_gputrace):
"""Generates a Chrome Trace event to show Op execution.
Args:
nodestats: The 'NodeExecStats' proto recording op execution.
pid: The pid assigned for the device where this op ran.
is_gputrace: If True then this op came from the GPUTracer.
"""
node_name = nodestats.node_name
start = nodestats.all_start_micros
duration = nodestats.all_end_rel_micros
tid = nodestats.thread_id
inputs = []
if is_gputrace:
# Node names should always have the form 'name:op'.
fields = node_name.split(':') + ['unknown']
node_name, op = fields[:2]
elif node_name == 'RecvTensor':
# RPC tracing does not use the standard timeline_label format.
op = 'RecvTensor'
else:
_, op, inputs = self._parse_op_label(nodestats.timeline_label)
args = {'name': node_name, 'op': op}
for i, iname in enumerate(inputs):
args['input%d' % i] = iname
self._chrome_trace.emit_region(start, duration, pid, tid, 'Op', op, args)
def _emit_tensor_snapshot(self, tensor, timestamp, pid, tid, value):
"""Generate Chrome Trace snapshot event for a computed Tensor.
Args:
tensor: A 'TensorTracker' object.
timestamp: The timestamp of this snapshot as a long integer.
pid: The pid assigned for showing the device where this op ran.
tid: The tid of the thread computing the tensor snapshot.
value: A JSON-compliant snapshot of the object.
"""
desc = str(value.tensor_description).replace('"', '')
snapshot = {'tensor_description': desc}
self._chrome_trace.emit_obj_snapshot('Tensor', tensor.name, timestamp, pid,
tid, tensor.object_id, snapshot)
def _produce_tensor(self, name, timestamp, tensors_pid, allocator, num_bytes):
object_id = len(self._tensors)
tensor = _TensorTracker(name, object_id, timestamp, tensors_pid, allocator,
num_bytes)
self._tensors[name] = tensor
return tensor
def _is_gputrace_device(self, device_name):
"""Returns true if this device is part of the GPUTracer logging."""
return '/stream:' in device_name or '/memcpy' in device_name
def _allocate_pids(self):
"""Allocate fake process ids for each device in the StepStats."""
self._allocators_pid = self._alloc_pid()
self._chrome_trace.emit_pid('Allocators', self._allocators_pid)
# Add processes in the Chrome trace to show compute and data activity.
for dev_stats in self._step_stats.dev_stats:
device_pid = self._alloc_pid()
self._device_pids[dev_stats.device] = device_pid
tensors_pid = self._alloc_pid()
self._tensor_pids[dev_stats.device] = tensors_pid
self._chrome_trace.emit_pid(dev_stats.device + ' Compute', device_pid)
self._chrome_trace.emit_pid(dev_stats.device + ' Tensors', tensors_pid)
def _analyze_tensors(self, show_memory):
"""Analyze tensor references to track dataflow."""
for dev_stats in self._step_stats.dev_stats:
device_pid = self._device_pids[dev_stats.device]
tensors_pid = self._tensor_pids[dev_stats.device]
for node_stats in dev_stats.node_stats:
tid = node_stats.thread_id
node_name = node_stats.node_name
start_time = node_stats.all_start_micros
end_time = node_stats.all_start_micros + node_stats.all_end_rel_micros
for index, output in enumerate(node_stats.output):
if index:
output_name = '%s:%d' % (node_name, index)
else:
output_name = node_name
allocation = output.tensor_description.allocation_description
num_bytes = allocation.requested_bytes
allocator_name = allocation.allocator_name
tensor = self._produce_tensor(output_name, start_time, tensors_pid,
allocator_name, num_bytes)
tensor.add_ref(start_time)
tensor.add_unref(end_time)
self._flow_starts[output_name] = (end_time, device_pid, tid)
if show_memory:
self._chrome_trace.emit_obj_create('Tensor', output_name,
start_time, tensors_pid, tid,
tensor.object_id)
self._emit_tensor_snapshot(tensor, end_time - 1, tensors_pid, tid,
output)
def _show_compute(self, show_dataflow):
"""Visualize the computation activity."""
for dev_stats in self._step_stats.dev_stats:
device_name = dev_stats.device
device_pid = self._device_pids[device_name]
is_gputrace = self._is_gputrace_device(device_name)
for node_stats in dev_stats.node_stats:
tid = node_stats.thread_id
start_time = node_stats.all_start_micros
end_time = node_stats.all_start_micros + node_stats.all_end_rel_micros
self._emit_op(node_stats, device_pid, is_gputrace)
if is_gputrace or node_stats.node_name == 'RecvTensor':
continue
_, _, inputs = self._parse_op_label(node_stats.timeline_label)
for input_name in inputs:
if input_name not in self._tensors:
# This can happen when partitioning has inserted a Send/Recv.
# We remove the numeric suffix so that the dataflow appears to
# come from the original node. Ideally, the StepStats would
# contain logging for the Send and Recv nodes.
index = input_name.rfind('/_')
if index > 0:
input_name = input_name[:index]
if input_name in self._tensors:
tensor = self._tensors[input_name]
tensor.add_ref(start_time)
tensor.add_unref(end_time - 1)
if show_dataflow:
# We use a different flow ID for every graph edge.
create_time, create_pid, create_tid = self._flow_starts[
input_name]
# Don't add flows when producer and consumer ops are on the same
# pid/tid since the horizontal arrows clutter the visualization.
if create_pid != device_pid or create_tid != tid:
flow_id = self._alloc_flow_id()
self._chrome_trace.emit_flow_start(input_name, create_time,
create_pid, create_tid,
flow_id)
self._chrome_trace.emit_flow_end(input_name, start_time,
device_pid, tid, flow_id)
else:
logging.vlog(1, 'Can\'t find tensor %s - removed by CSE?',
input_name)
def _show_memory_counters(self):
"""Produce a counter series for each memory allocator."""
# Iterate over all tensor trackers to build a list of allocations and
# frees for each allocator. Then sort the lists and emit a cumulative
# counter series for each allocator.
allocations = {}
for name in self._tensors:
tensor = self._tensors[name]
self._chrome_trace.emit_obj_delete('Tensor', name, tensor.last_unref,
tensor.pid, 0, tensor.object_id)
allocator = tensor.allocator
if allocator not in allocations:
allocations[allocator] = []
num_bytes = tensor.num_bytes
allocations[allocator].append((tensor.create_time, num_bytes, name))
allocations[allocator].append((tensor.last_unref, -num_bytes, name))
alloc_maxes = {}
# Generate a counter series showing total allocations for each allocator.
for allocator in allocations:
alloc_list = allocations[allocator]
alloc_list.sort()
total_bytes = 0
alloc_tensor_set = set()
alloc_maxes[allocator] = AllocationMaximum(
timestamp=0, num_bytes=0, tensors=set())
for time, num_bytes, name in alloc_list:
total_bytes += num_bytes
if num_bytes < 0:
alloc_tensor_set.discard(name)
else:
alloc_tensor_set.add(name)
if total_bytes > alloc_maxes[allocator].num_bytes:
alloc_maxes[allocator] = AllocationMaximum(
timestamp=time,
num_bytes=total_bytes,
tensors=copy.deepcopy(alloc_tensor_set))
self._chrome_trace.emit_counter('Memory', allocator,
self._allocators_pid, time, allocator,
total_bytes)
self._allocator_maximums = alloc_maxes
def analyze_step_stats(self, show_dataflow=True, show_memory=True):
self._allocate_pids()
self._assign_lanes()
self._analyze_tensors(show_memory)
self._show_compute(show_dataflow)
if show_memory:
self._show_memory_counters()
return StepStatsAnalysis(
chrome_trace=self._chrome_trace,
allocator_maximums=self._allocator_maximums)
def generate_chrome_trace_format(self, show_dataflow=True, show_memory=False):
"""Produces a trace in Chrome Trace Format.
Args:
show_dataflow: (Optional.) If True, add flow events to the trace
connecting producers and consumers of tensors.
show_memory: (Optional.) If True, add object snapshot events to the trace
showing the sizes and lifetimes of tensors.
Returns:
A JSON formatted string in Chrome Trace format.
"""
step_stats_analysis = self.analyze_step_stats(
show_dataflow=show_dataflow, show_memory=show_memory)
return step_stats_analysis.chrome_trace.format_to_string(pretty=True)