# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Timeline visualization for TensorFlow using Chrome Trace Format.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import copy import json import re # The timeline target is usually imported as part of BUILD target # "platform_test", which includes also includes the "platform" # dependency. This is why the logging import here is okay. from tensorflow.python.platform import tf_logging as logging class AllocationMaximum(collections.namedtuple( 'AllocationMaximum', ('timestamp', 'num_bytes', 'tensors'))): """Stores the maximum allocation for a given allocator within the timelne. Parameters: timestamp: `tensorflow::Env::NowMicros()` when this maximum was reached. num_bytes: the total memory used at this time. tensors: the set of tensors allocated at this time. """ pass class StepStatsAnalysis(collections.namedtuple( 'StepStatsAnalysis', ('chrome_trace', 'allocator_maximums'))): """Stores the step stats analysis output. Parameters: chrome_trace: A dict containing the chrome trace analysis. allocator_maximums: A dict mapping allocator names to AllocationMaximum. """ pass class _ChromeTraceFormatter(object): """A helper class for generating traces in Chrome Trace Format.""" def __init__(self, show_memory=False): """Constructs a new Chrome Trace formatter.""" self._show_memory = show_memory self._events = [] self._metadata = [] def _create_event(self, ph, category, name, pid, tid, timestamp): """Creates a new Chrome Trace event. For details of the file format, see: https://github.com/catapult-project/catapult/blob/master/tracing/README.md Args: ph: The type of event - usually a single character. category: The event category as a string. name: The event name as a string. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. timestamp: The timestamp of this event as a long integer. Returns: A JSON compatible event object. """ event = {} event['ph'] = ph event['cat'] = category event['name'] = name event['pid'] = pid event['tid'] = tid event['ts'] = timestamp return event def emit_pid(self, name, pid): """Adds a process metadata event to the trace. Args: name: The process name as a string. pid: Identifier of the process as an integer. """ event = {} event['name'] = 'process_name' event['ph'] = 'M' event['pid'] = pid event['args'] = {'name': name} self._metadata.append(event) def emit_tid(self, name, pid, tid): """Adds a thread metadata event to the trace. Args: name: The thread name as a string. pid: Identifier of the process as an integer. tid: Identifier of the thread as an integer. """ event = {} event['name'] = 'thread_name' event['ph'] = 'M' event['pid'] = pid event['tid'] = tid event['args'] = {'name': name} self._metadata.append(event) def emit_region(self, timestamp, duration, pid, tid, category, name, args): """Adds a region event to the trace. Args: timestamp: The start timestamp of this region as a long integer. duration: The duration of this region as a long integer. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. category: The event category as a string. name: The event name as a string. args: A JSON-compatible dictionary of event arguments. """ event = self._create_event('X', category, name, pid, tid, timestamp) event['dur'] = duration event['args'] = args self._events.append(event) def emit_obj_create(self, category, name, timestamp, pid, tid, object_id): """Adds an object creation event to the trace. Args: category: The event category as a string. name: The event name as a string. timestamp: The timestamp of this event as a long integer. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. object_id: Identifier of the object as an integer. """ event = self._create_event('N', category, name, pid, tid, timestamp) event['id'] = object_id self._events.append(event) def emit_obj_delete(self, category, name, timestamp, pid, tid, object_id): """Adds an object deletion event to the trace. Args: category: The event category as a string. name: The event name as a string. timestamp: The timestamp of this event as a long integer. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. object_id: Identifier of the object as an integer. """ event = self._create_event('D', category, name, pid, tid, timestamp) event['id'] = object_id self._events.append(event) def emit_obj_snapshot(self, category, name, timestamp, pid, tid, object_id, snapshot): """Adds an object snapshot event to the trace. Args: category: The event category as a string. name: The event name as a string. timestamp: The timestamp of this event as a long integer. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. object_id: Identifier of the object as an integer. snapshot: A JSON-compatible representation of the object. """ event = self._create_event('O', category, name, pid, tid, timestamp) event['id'] = object_id event['args'] = {'snapshot': snapshot} self._events.append(event) def emit_flow_start(self, name, timestamp, pid, tid, flow_id): """Adds a flow start event to the trace. When matched with a flow end event (with the same 'flow_id') this will cause the trace viewer to draw an arrow between the start and end events. Args: name: The event name as a string. timestamp: The timestamp of this event as a long integer. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. flow_id: Identifier of the flow as an integer. """ event = self._create_event('s', 'DataFlow', name, pid, tid, timestamp) event['id'] = flow_id self._events.append(event) def emit_flow_end(self, name, timestamp, pid, tid, flow_id): """Adds a flow end event to the trace. When matched with a flow start event (with the same 'flow_id') this will cause the trace viewer to draw an arrow between the start and end events. Args: name: The event name as a string. timestamp: The timestamp of this event as a long integer. pid: Identifier of the process generating this event as an integer. tid: Identifier of the thread generating this event as an integer. flow_id: Identifier of the flow as an integer. """ event = self._create_event('t', 'DataFlow', name, pid, tid, timestamp) event['id'] = flow_id self._events.append(event) def emit_counter(self, category, name, pid, timestamp, counter, value): """Emits a record for a single counter. Args: category: The event category as a string. name: The event name as a string. pid: Identifier of the process generating this event as an integer. timestamp: The timestamp of this event as a long integer. counter: Name of the counter as a string. value: Value of the counter as an integer. """ event = self._create_event('C', category, name, pid, 0, timestamp) event['args'] = {counter: value} self._events.append(event) def emit_counters(self, category, name, pid, timestamp, counters): """Emits a counter record for the dictionary 'counters'. Args: category: The event category as a string. name: The event name as a string. pid: Identifier of the process generating this event as an integer. timestamp: The timestamp of this event as a long integer. counters: Dictionary of counter values. """ event = self._create_event('C', category, name, pid, 0, timestamp) event['args'] = counters.copy() self._events.append(event) def format_to_string(self, pretty=False): """Formats the chrome trace to a string. Args: pretty: (Optional.) If True, produce human-readable JSON output. Returns: A JSON-formatted string in Chrome Trace format. """ trace = {} trace['traceEvents'] = self._metadata + self._events if pretty: return json.dumps(trace, indent=4, separators=(',', ': ')) else: return json.dumps(trace, separators=(',', ':')) class _TensorTracker(object): """An internal class to track the lifetime of a Tensor.""" def __init__(self, name, object_id, timestamp, pid, allocator, num_bytes): """Creates an object to track tensor references. This class is not thread safe and is intended only for internal use by the 'Timeline' class in this file. Args: name: The name of the Tensor as a string. object_id: Chrome Trace object identifier assigned for this Tensor. timestamp: The creation timestamp of this event as a long integer. pid: Process identifier of the associated device, as an integer. allocator: Name of the allocator used to create the Tensor. num_bytes: Number of bytes allocated (long integer). Returns: A 'TensorTracker' object. """ self._name = name self._pid = pid self._object_id = object_id self._create_time = timestamp self._allocator = allocator self._num_bytes = num_bytes self._ref_times = [] self._unref_times = [] @property def name(self): """Name of this tensor.""" return self._name @property def pid(self): """ID of the process which created this tensor (an integer).""" return self._pid @property def create_time(self): """Timestamp when this tensor was created (long integer).""" return self._create_time @property def object_id(self): """Returns the object identifier of this tensor (integer).""" return self._object_id @property def num_bytes(self): """Size of this tensor in bytes (long integer).""" return self._num_bytes @property def allocator(self): """Name of the allocator used to create this tensor (string).""" return self._allocator @property def last_unref(self): """Last unreference timestamp of this tensor (long integer).""" return max(self._unref_times) def add_ref(self, timestamp): """Adds a reference to this tensor with the specified timestamp. Args: timestamp: Timestamp of object reference as an integer. """ self._ref_times.append(timestamp) def add_unref(self, timestamp): """Adds an unref to this tensor with the specified timestamp. Args: timestamp: Timestamp of object unreference as an integer. """ self._unref_times.append(timestamp) class Timeline(object): """A class for visualizing execution timelines of TensorFlow steps.""" def __init__(self, step_stats, graph=None): """Constructs a new Timeline. A 'Timeline' is used for visualizing the execution of a TensorFlow computation. It shows the timings and concurrency of execution at the granularity of TensorFlow Ops. This class is not thread safe. Args: step_stats: The 'StepStats' proto recording execution times. graph: (Optional) The 'Graph' that was executed. """ self._step_stats = step_stats self._graph = graph self._chrome_trace = _ChromeTraceFormatter() self._next_pid = 0 self._device_pids = {} # device name -> pid for compute activity. self._tensor_pids = {} # device name -> pid for tensors. self._tensors = {} # tensor_name -> TensorTracker self._next_flow_id = 0 self._flow_starts = {} # tensor_name -> (timestamp, pid, tid) self._alloc_times = {} # tensor_name -> ( time, allocator, size ) self._allocator_maximums = {} # allocator name => maximum bytes long def _alloc_pid(self): """Allocate a process Id.""" pid = self._next_pid self._next_pid += 1 return pid def _alloc_flow_id(self): """Allocate a flow Id.""" flow_id = self._next_flow_id self._next_flow_id += 1 return flow_id def _parse_op_label(self, label): """Parses the fields in a node timeline label.""" # Expects labels of the form: name = op(arg, arg, ...). match = re.match(r'(.*) = (.*)\((.*)\)', label) if match is None: return 'unknown', 'unknown', [] nn, op, inputs = match.groups() if not inputs: inputs = [] else: inputs = inputs.split(', ') return nn, op, inputs def _assign_lanes(self): """Assigns non-overlapping lanes for the activities on each device.""" for device_stats in self._step_stats.dev_stats: # TODO(pbar): Genuine thread IDs in NodeExecStats might be helpful. lanes = [0] for ns in device_stats.node_stats: l = -1 for (i, lts) in enumerate(lanes): if ns.all_start_micros > lts: l = i lanes[l] = ns.all_start_micros + ns.all_end_rel_micros break if l < 0: l = len(lanes) lanes.append(ns.all_start_micros + ns.all_end_rel_micros) ns.thread_id = l def _emit_op(self, nodestats, pid, is_gputrace): """Generates a Chrome Trace event to show Op execution. Args: nodestats: The 'NodeExecStats' proto recording op execution. pid: The pid assigned for the device where this op ran. is_gputrace: If True then this op came from the GPUTracer. """ node_name = nodestats.node_name start = nodestats.all_start_micros duration = nodestats.all_end_rel_micros tid = nodestats.thread_id inputs = [] if is_gputrace: # Node names should always have the form 'name:op'. fields = node_name.split(':') + ['unknown'] node_name, op = fields[:2] elif node_name == 'RecvTensor': # RPC tracing does not use the standard timeline_label format. op = 'RecvTensor' else: _, op, inputs = self._parse_op_label(nodestats.timeline_label) args = {'name': node_name, 'op': op} for i, iname in enumerate(inputs): args['input%d' % i] = iname self._chrome_trace.emit_region(start, duration, pid, tid, 'Op', op, args) def _emit_tensor_snapshot(self, tensor, timestamp, pid, tid, value): """Generate Chrome Trace snapshot event for a computed Tensor. Args: tensor: A 'TensorTracker' object. timestamp: The timestamp of this snapshot as a long integer. pid: The pid assigned for showing the device where this op ran. tid: The tid of the thread computing the tensor snapshot. value: A JSON-compliant snapshot of the object. """ desc = str(value.tensor_description).replace('"', '') snapshot = {'tensor_description': desc} self._chrome_trace.emit_obj_snapshot('Tensor', tensor.name, timestamp, pid, tid, tensor.object_id, snapshot) def _produce_tensor(self, name, timestamp, tensors_pid, allocator, num_bytes): object_id = len(self._tensors) tensor = _TensorTracker(name, object_id, timestamp, tensors_pid, allocator, num_bytes) self._tensors[name] = tensor return tensor def _is_gputrace_device(self, device_name): """Returns true if this device is part of the GPUTracer logging.""" return '/stream:' in device_name or '/memcpy' in device_name def _allocate_pids(self): """Allocate fake process ids for each device in the StepStats.""" self._allocators_pid = self._alloc_pid() self._chrome_trace.emit_pid('Allocators', self._allocators_pid) # Add processes in the Chrome trace to show compute and data activity. for dev_stats in self._step_stats.dev_stats: device_pid = self._alloc_pid() self._device_pids[dev_stats.device] = device_pid tensors_pid = self._alloc_pid() self._tensor_pids[dev_stats.device] = tensors_pid self._chrome_trace.emit_pid(dev_stats.device + ' Compute', device_pid) self._chrome_trace.emit_pid(dev_stats.device + ' Tensors', tensors_pid) def _analyze_tensors(self, show_memory): """Analyze tensor references to track dataflow.""" for dev_stats in self._step_stats.dev_stats: device_pid = self._device_pids[dev_stats.device] tensors_pid = self._tensor_pids[dev_stats.device] for node_stats in dev_stats.node_stats: tid = node_stats.thread_id node_name = node_stats.node_name start_time = node_stats.all_start_micros end_time = node_stats.all_start_micros + node_stats.all_end_rel_micros for index, output in enumerate(node_stats.output): if index: output_name = '%s:%d' % (node_name, index) else: output_name = node_name allocation = output.tensor_description.allocation_description num_bytes = allocation.requested_bytes allocator_name = allocation.allocator_name tensor = self._produce_tensor(output_name, start_time, tensors_pid, allocator_name, num_bytes) tensor.add_ref(start_time) tensor.add_unref(end_time) self._flow_starts[output_name] = (end_time, device_pid, tid) if show_memory: self._chrome_trace.emit_obj_create('Tensor', output_name, start_time, tensors_pid, tid, tensor.object_id) self._emit_tensor_snapshot(tensor, end_time - 1, tensors_pid, tid, output) def _show_compute(self, show_dataflow): """Visualize the computation activity.""" for dev_stats in self._step_stats.dev_stats: device_name = dev_stats.device device_pid = self._device_pids[device_name] is_gputrace = self._is_gputrace_device(device_name) for node_stats in dev_stats.node_stats: tid = node_stats.thread_id start_time = node_stats.all_start_micros end_time = node_stats.all_start_micros + node_stats.all_end_rel_micros self._emit_op(node_stats, device_pid, is_gputrace) if is_gputrace or node_stats.node_name == 'RecvTensor': continue _, _, inputs = self._parse_op_label(node_stats.timeline_label) for input_name in inputs: if input_name not in self._tensors: # This can happen when partitioning has inserted a Send/Recv. # We remove the numeric suffix so that the dataflow appears to # come from the original node. Ideally, the StepStats would # contain logging for the Send and Recv nodes. index = input_name.rfind('/_') if index > 0: input_name = input_name[:index] if input_name in self._tensors: tensor = self._tensors[input_name] tensor.add_ref(start_time) tensor.add_unref(end_time - 1) if show_dataflow: # We use a different flow ID for every graph edge. create_time, create_pid, create_tid = self._flow_starts[ input_name] # Don't add flows when producer and consumer ops are on the same # pid/tid since the horizontal arrows clutter the visualization. if create_pid != device_pid or create_tid != tid: flow_id = self._alloc_flow_id() self._chrome_trace.emit_flow_start(input_name, create_time, create_pid, create_tid, flow_id) self._chrome_trace.emit_flow_end(input_name, start_time, device_pid, tid, flow_id) else: logging.vlog(1, 'Can\'t find tensor %s - removed by CSE?', input_name) def _show_memory_counters(self): """Produce a counter series for each memory allocator.""" # Iterate over all tensor trackers to build a list of allocations and # frees for each allocator. Then sort the lists and emit a cumulative # counter series for each allocator. allocations = {} for name in self._tensors: tensor = self._tensors[name] self._chrome_trace.emit_obj_delete('Tensor', name, tensor.last_unref, tensor.pid, 0, tensor.object_id) allocator = tensor.allocator if allocator not in allocations: allocations[allocator] = [] num_bytes = tensor.num_bytes allocations[allocator].append((tensor.create_time, num_bytes, name)) allocations[allocator].append((tensor.last_unref, -num_bytes, name)) alloc_maxes = {} # Generate a counter series showing total allocations for each allocator. for allocator in allocations: alloc_list = allocations[allocator] alloc_list.sort() total_bytes = 0 alloc_tensor_set = set() alloc_maxes[allocator] = AllocationMaximum( timestamp=0, num_bytes=0, tensors=set()) for time, num_bytes, name in alloc_list: total_bytes += num_bytes if num_bytes < 0: alloc_tensor_set.discard(name) else: alloc_tensor_set.add(name) if total_bytes > alloc_maxes[allocator].num_bytes: alloc_maxes[allocator] = AllocationMaximum( timestamp=time, num_bytes=total_bytes, tensors=copy.deepcopy(alloc_tensor_set)) self._chrome_trace.emit_counter('Memory', allocator, self._allocators_pid, time, allocator, total_bytes) self._allocator_maximums = alloc_maxes def analyze_step_stats(self, show_dataflow=True, show_memory=True): self._allocate_pids() self._assign_lanes() self._analyze_tensors(show_memory) self._show_compute(show_dataflow) if show_memory: self._show_memory_counters() return StepStatsAnalysis( chrome_trace=self._chrome_trace, allocator_maximums=self._allocator_maximums) def generate_chrome_trace_format(self, show_dataflow=True, show_memory=False): """Produces a trace in Chrome Trace Format. Args: show_dataflow: (Optional.) If True, add flow events to the trace connecting producers and consumers of tensors. show_memory: (Optional.) If True, add object snapshot events to the trace showing the sizes and lifetimes of tensors. Returns: A JSON formatted string in Chrome Trace format. """ step_stats_analysis = self.analyze_step_stats( show_dataflow=show_dataflow, show_memory=show_memory) return step_stats_analysis.chrome_trace.format_to_string(pretty=True)