laywerrobot/lib/python3.6/site-packages/pandas/io/json/table_schema.py
2020-08-27 21:55:39 +02:00

324 lines
9.9 KiB
Python

"""
Table Schema builders
http://specs.frictionlessdata.io/json-table-schema/
"""
import warnings
import pandas._libs.json as json
from pandas import DataFrame
from pandas.api.types import CategoricalDtype
import pandas.core.common as com
from pandas.core.dtypes.common import (
is_integer_dtype, is_timedelta64_dtype, is_numeric_dtype,
is_bool_dtype, is_datetime64_dtype, is_datetime64tz_dtype,
is_categorical_dtype, is_period_dtype, is_string_dtype
)
loads = json.loads
def as_json_table_type(x):
"""
Convert a NumPy / pandas type to its corresponding json_table.
Parameters
----------
x : array or dtype
Returns
-------
t : str
the Table Schema data types
Notes
-----
This table shows the relationship between NumPy / pandas dtypes,
and Table Schema dtypes.
============== =================
Pandas type Table Schema type
============== =================
int64 integer
float64 number
bool boolean
datetime64[ns] datetime
timedelta64[ns] duration
object str
categorical any
=============== =================
"""
if is_integer_dtype(x):
return 'integer'
elif is_bool_dtype(x):
return 'boolean'
elif is_numeric_dtype(x):
return 'number'
elif (is_datetime64_dtype(x) or is_datetime64tz_dtype(x) or
is_period_dtype(x)):
return 'datetime'
elif is_timedelta64_dtype(x):
return 'duration'
elif is_categorical_dtype(x):
return 'any'
elif is_string_dtype(x):
return 'string'
else:
return 'any'
def set_default_names(data):
"""Sets index names to 'index' for regular, or 'level_x' for Multi"""
if com._all_not_none(*data.index.names):
nms = data.index.names
if len(nms) == 1 and data.index.name == 'index':
warnings.warn("Index name of 'index' is not round-trippable")
elif len(nms) > 1 and any(x.startswith('level_') for x in nms):
warnings.warn("Index names beginning with 'level_' are not "
"round-trippable")
return data
data = data.copy()
if data.index.nlevels > 1:
names = [name if name is not None else 'level_{}'.format(i)
for i, name in enumerate(data.index.names)]
data.index.names = names
else:
data.index.name = data.index.name or 'index'
return data
def convert_pandas_type_to_json_field(arr, dtype=None):
dtype = dtype or arr.dtype
if arr.name is None:
name = 'values'
else:
name = arr.name
field = {'name': name,
'type': as_json_table_type(dtype)}
if is_categorical_dtype(arr):
if hasattr(arr, 'categories'):
cats = arr.categories
ordered = arr.ordered
else:
cats = arr.cat.categories
ordered = arr.cat.ordered
field['constraints'] = {"enum": list(cats)}
field['ordered'] = ordered
elif is_period_dtype(arr):
field['freq'] = arr.freqstr
elif is_datetime64tz_dtype(arr):
if hasattr(arr, 'dt'):
field['tz'] = arr.dt.tz.zone
else:
field['tz'] = arr.tz.zone
return field
def convert_json_field_to_pandas_type(field):
"""
Converts a JSON field descriptor into its corresponding NumPy / pandas type
Parameters
----------
field
A JSON field descriptor
Returns
-------
dtype
Raises
-----
ValueError
If the type of the provided field is unknown or currently unsupported
Examples
--------
>>> convert_json_field_to_pandas_type({'name': 'an_int',
'type': 'integer'})
'int64'
>>> convert_json_field_to_pandas_type({'name': 'a_categorical',
'type': 'any',
'contraints': {'enum': [
'a', 'b', 'c']},
'ordered': True})
'CategoricalDtype(categories=['a', 'b', 'c'], ordered=True)'
>>> convert_json_field_to_pandas_type({'name': 'a_datetime',
'type': 'datetime'})
'datetime64[ns]'
>>> convert_json_field_to_pandas_type({'name': 'a_datetime_with_tz',
'type': 'datetime',
'tz': 'US/Central'})
'datetime64[ns, US/Central]'
"""
typ = field['type']
if typ == 'string':
return 'object'
elif typ == 'integer':
return 'int64'
elif typ == 'number':
return 'float64'
elif typ == 'boolean':
return 'bool'
elif typ == 'duration':
return 'timedelta64'
elif typ == 'datetime':
if field.get('tz'):
return 'datetime64[ns, {tz}]'.format(tz=field['tz'])
else:
return 'datetime64[ns]'
elif typ == 'any':
if 'constraints' in field and 'ordered' in field:
return CategoricalDtype(categories=field['constraints']['enum'],
ordered=field['ordered'])
else:
return 'object'
raise ValueError("Unsupported or invalid field type: {}".format(typ))
def build_table_schema(data, index=True, primary_key=None, version=True):
"""
Create a Table schema from ``data``.
Parameters
----------
data : Series, DataFrame
index : bool, default True
Whether to include ``data.index`` in the schema.
primary_key : bool or None, default True
column names to designate as the primary key.
The default `None` will set `'primaryKey'` to the index
level or levels if the index is unique.
version : bool, default True
Whether to include a field `pandas_version` with the version
of pandas that generated the schema.
Returns
-------
schema : dict
Examples
--------
>>> df = pd.DataFrame(
... {'A': [1, 2, 3],
... 'B': ['a', 'b', 'c'],
... 'C': pd.date_range('2016-01-01', freq='d', periods=3),
... }, index=pd.Index(range(3), name='idx'))
>>> build_table_schema(df)
{'fields': [{'name': 'idx', 'type': 'integer'},
{'name': 'A', 'type': 'integer'},
{'name': 'B', 'type': 'string'},
{'name': 'C', 'type': 'datetime'}],
'pandas_version': '0.20.0',
'primaryKey': ['idx']}
Notes
-----
See `_as_json_table_type` for conversion types.
Timedeltas as converted to ISO8601 duration format with
9 decimal places after the secnods field for nanosecond precision.
Categoricals are converted to the `any` dtype, and use the `enum` field
constraint to list the allowed values. The `ordered` attribute is included
in an `ordered` field.
"""
if index is True:
data = set_default_names(data)
schema = {}
fields = []
if index:
if data.index.nlevels > 1:
for level in data.index.levels:
fields.append(convert_pandas_type_to_json_field(level))
else:
fields.append(convert_pandas_type_to_json_field(data.index))
if data.ndim > 1:
for column, s in data.iteritems():
fields.append(convert_pandas_type_to_json_field(s))
else:
fields.append(convert_pandas_type_to_json_field(data))
schema['fields'] = fields
if index and data.index.is_unique and primary_key is None:
if data.index.nlevels == 1:
schema['primaryKey'] = [data.index.name]
else:
schema['primaryKey'] = data.index.names
elif primary_key is not None:
schema['primaryKey'] = primary_key
if version:
schema['pandas_version'] = '0.20.0'
return schema
def parse_table_schema(json, precise_float):
"""
Builds a DataFrame from a given schema
Parameters
----------
json :
A JSON table schema
precise_float : boolean
Flag controlling precision when decoding string to double values, as
dictated by ``read_json``
Returns
-------
df : DataFrame
Raises
------
NotImplementedError
If the JSON table schema contains either timezone or timedelta data
Notes
-----
Because :func:`DataFrame.to_json` uses the string 'index' to denote a
name-less :class:`Index`, this function sets the name of the returned
:class:`DataFrame` to ``None`` when said string is encountered with a
normal :class:`Index`. For a :class:`MultiIndex`, the same limitation
applies to any strings beginning with 'level_'. Therefore, an
:class:`Index` name of 'index' and :class:`MultiIndex` names starting
with 'level_' are not supported.
See also
--------
build_table_schema : inverse function
pandas.read_json
"""
table = loads(json, precise_float=precise_float)
col_order = [field['name'] for field in table['schema']['fields']]
df = DataFrame(table['data'], columns=col_order)[col_order]
dtypes = {field['name']: convert_json_field_to_pandas_type(field)
for field in table['schema']['fields']}
# Cannot directly use as_type with timezone data on object; raise for now
if any(str(x).startswith('datetime64[ns, ') for x in dtypes.values()):
raise NotImplementedError('table="orient" can not yet read timezone '
'data')
# No ISO constructor for Timedelta as of yet, so need to raise
if 'timedelta64' in dtypes.values():
raise NotImplementedError('table="orient" can not yet read '
'ISO-formatted Timedelta data')
df = df.astype(dtypes)
df = df.set_index(table['schema']['primaryKey'])
if len(df.index.names) == 1:
if df.index.name == 'index':
df.index.name = None
else:
df.index.names = [None if x.startswith('level_') else x for x in
df.index.names]
return df