325 lines
9.9 KiB
Python
325 lines
9.9 KiB
Python
|
"""
|
||
|
Table Schema builders
|
||
|
|
||
|
http://specs.frictionlessdata.io/json-table-schema/
|
||
|
"""
|
||
|
import warnings
|
||
|
|
||
|
import pandas._libs.json as json
|
||
|
from pandas import DataFrame
|
||
|
from pandas.api.types import CategoricalDtype
|
||
|
import pandas.core.common as com
|
||
|
from pandas.core.dtypes.common import (
|
||
|
is_integer_dtype, is_timedelta64_dtype, is_numeric_dtype,
|
||
|
is_bool_dtype, is_datetime64_dtype, is_datetime64tz_dtype,
|
||
|
is_categorical_dtype, is_period_dtype, is_string_dtype
|
||
|
)
|
||
|
|
||
|
loads = json.loads
|
||
|
|
||
|
|
||
|
def as_json_table_type(x):
|
||
|
"""
|
||
|
Convert a NumPy / pandas type to its corresponding json_table.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : array or dtype
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
t : str
|
||
|
the Table Schema data types
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This table shows the relationship between NumPy / pandas dtypes,
|
||
|
and Table Schema dtypes.
|
||
|
|
||
|
============== =================
|
||
|
Pandas type Table Schema type
|
||
|
============== =================
|
||
|
int64 integer
|
||
|
float64 number
|
||
|
bool boolean
|
||
|
datetime64[ns] datetime
|
||
|
timedelta64[ns] duration
|
||
|
object str
|
||
|
categorical any
|
||
|
=============== =================
|
||
|
"""
|
||
|
if is_integer_dtype(x):
|
||
|
return 'integer'
|
||
|
elif is_bool_dtype(x):
|
||
|
return 'boolean'
|
||
|
elif is_numeric_dtype(x):
|
||
|
return 'number'
|
||
|
elif (is_datetime64_dtype(x) or is_datetime64tz_dtype(x) or
|
||
|
is_period_dtype(x)):
|
||
|
return 'datetime'
|
||
|
elif is_timedelta64_dtype(x):
|
||
|
return 'duration'
|
||
|
elif is_categorical_dtype(x):
|
||
|
return 'any'
|
||
|
elif is_string_dtype(x):
|
||
|
return 'string'
|
||
|
else:
|
||
|
return 'any'
|
||
|
|
||
|
|
||
|
def set_default_names(data):
|
||
|
"""Sets index names to 'index' for regular, or 'level_x' for Multi"""
|
||
|
if com._all_not_none(*data.index.names):
|
||
|
nms = data.index.names
|
||
|
if len(nms) == 1 and data.index.name == 'index':
|
||
|
warnings.warn("Index name of 'index' is not round-trippable")
|
||
|
elif len(nms) > 1 and any(x.startswith('level_') for x in nms):
|
||
|
warnings.warn("Index names beginning with 'level_' are not "
|
||
|
"round-trippable")
|
||
|
return data
|
||
|
|
||
|
data = data.copy()
|
||
|
if data.index.nlevels > 1:
|
||
|
names = [name if name is not None else 'level_{}'.format(i)
|
||
|
for i, name in enumerate(data.index.names)]
|
||
|
data.index.names = names
|
||
|
else:
|
||
|
data.index.name = data.index.name or 'index'
|
||
|
return data
|
||
|
|
||
|
|
||
|
def convert_pandas_type_to_json_field(arr, dtype=None):
|
||
|
dtype = dtype or arr.dtype
|
||
|
if arr.name is None:
|
||
|
name = 'values'
|
||
|
else:
|
||
|
name = arr.name
|
||
|
field = {'name': name,
|
||
|
'type': as_json_table_type(dtype)}
|
||
|
|
||
|
if is_categorical_dtype(arr):
|
||
|
if hasattr(arr, 'categories'):
|
||
|
cats = arr.categories
|
||
|
ordered = arr.ordered
|
||
|
else:
|
||
|
cats = arr.cat.categories
|
||
|
ordered = arr.cat.ordered
|
||
|
field['constraints'] = {"enum": list(cats)}
|
||
|
field['ordered'] = ordered
|
||
|
elif is_period_dtype(arr):
|
||
|
field['freq'] = arr.freqstr
|
||
|
elif is_datetime64tz_dtype(arr):
|
||
|
if hasattr(arr, 'dt'):
|
||
|
field['tz'] = arr.dt.tz.zone
|
||
|
else:
|
||
|
field['tz'] = arr.tz.zone
|
||
|
return field
|
||
|
|
||
|
|
||
|
def convert_json_field_to_pandas_type(field):
|
||
|
"""
|
||
|
Converts a JSON field descriptor into its corresponding NumPy / pandas type
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
field
|
||
|
A JSON field descriptor
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dtype
|
||
|
|
||
|
Raises
|
||
|
-----
|
||
|
ValueError
|
||
|
If the type of the provided field is unknown or currently unsupported
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> convert_json_field_to_pandas_type({'name': 'an_int',
|
||
|
'type': 'integer'})
|
||
|
'int64'
|
||
|
>>> convert_json_field_to_pandas_type({'name': 'a_categorical',
|
||
|
'type': 'any',
|
||
|
'contraints': {'enum': [
|
||
|
'a', 'b', 'c']},
|
||
|
'ordered': True})
|
||
|
'CategoricalDtype(categories=['a', 'b', 'c'], ordered=True)'
|
||
|
>>> convert_json_field_to_pandas_type({'name': 'a_datetime',
|
||
|
'type': 'datetime'})
|
||
|
'datetime64[ns]'
|
||
|
>>> convert_json_field_to_pandas_type({'name': 'a_datetime_with_tz',
|
||
|
'type': 'datetime',
|
||
|
'tz': 'US/Central'})
|
||
|
'datetime64[ns, US/Central]'
|
||
|
"""
|
||
|
typ = field['type']
|
||
|
if typ == 'string':
|
||
|
return 'object'
|
||
|
elif typ == 'integer':
|
||
|
return 'int64'
|
||
|
elif typ == 'number':
|
||
|
return 'float64'
|
||
|
elif typ == 'boolean':
|
||
|
return 'bool'
|
||
|
elif typ == 'duration':
|
||
|
return 'timedelta64'
|
||
|
elif typ == 'datetime':
|
||
|
if field.get('tz'):
|
||
|
return 'datetime64[ns, {tz}]'.format(tz=field['tz'])
|
||
|
else:
|
||
|
return 'datetime64[ns]'
|
||
|
elif typ == 'any':
|
||
|
if 'constraints' in field and 'ordered' in field:
|
||
|
return CategoricalDtype(categories=field['constraints']['enum'],
|
||
|
ordered=field['ordered'])
|
||
|
else:
|
||
|
return 'object'
|
||
|
|
||
|
raise ValueError("Unsupported or invalid field type: {}".format(typ))
|
||
|
|
||
|
|
||
|
def build_table_schema(data, index=True, primary_key=None, version=True):
|
||
|
"""
|
||
|
Create a Table schema from ``data``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : Series, DataFrame
|
||
|
index : bool, default True
|
||
|
Whether to include ``data.index`` in the schema.
|
||
|
primary_key : bool or None, default True
|
||
|
column names to designate as the primary key.
|
||
|
The default `None` will set `'primaryKey'` to the index
|
||
|
level or levels if the index is unique.
|
||
|
version : bool, default True
|
||
|
Whether to include a field `pandas_version` with the version
|
||
|
of pandas that generated the schema.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
schema : dict
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame(
|
||
|
... {'A': [1, 2, 3],
|
||
|
... 'B': ['a', 'b', 'c'],
|
||
|
... 'C': pd.date_range('2016-01-01', freq='d', periods=3),
|
||
|
... }, index=pd.Index(range(3), name='idx'))
|
||
|
>>> build_table_schema(df)
|
||
|
{'fields': [{'name': 'idx', 'type': 'integer'},
|
||
|
{'name': 'A', 'type': 'integer'},
|
||
|
{'name': 'B', 'type': 'string'},
|
||
|
{'name': 'C', 'type': 'datetime'}],
|
||
|
'pandas_version': '0.20.0',
|
||
|
'primaryKey': ['idx']}
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
See `_as_json_table_type` for conversion types.
|
||
|
Timedeltas as converted to ISO8601 duration format with
|
||
|
9 decimal places after the secnods field for nanosecond precision.
|
||
|
|
||
|
Categoricals are converted to the `any` dtype, and use the `enum` field
|
||
|
constraint to list the allowed values. The `ordered` attribute is included
|
||
|
in an `ordered` field.
|
||
|
"""
|
||
|
if index is True:
|
||
|
data = set_default_names(data)
|
||
|
|
||
|
schema = {}
|
||
|
fields = []
|
||
|
|
||
|
if index:
|
||
|
if data.index.nlevels > 1:
|
||
|
for level in data.index.levels:
|
||
|
fields.append(convert_pandas_type_to_json_field(level))
|
||
|
else:
|
||
|
fields.append(convert_pandas_type_to_json_field(data.index))
|
||
|
|
||
|
if data.ndim > 1:
|
||
|
for column, s in data.iteritems():
|
||
|
fields.append(convert_pandas_type_to_json_field(s))
|
||
|
else:
|
||
|
fields.append(convert_pandas_type_to_json_field(data))
|
||
|
|
||
|
schema['fields'] = fields
|
||
|
if index and data.index.is_unique and primary_key is None:
|
||
|
if data.index.nlevels == 1:
|
||
|
schema['primaryKey'] = [data.index.name]
|
||
|
else:
|
||
|
schema['primaryKey'] = data.index.names
|
||
|
elif primary_key is not None:
|
||
|
schema['primaryKey'] = primary_key
|
||
|
|
||
|
if version:
|
||
|
schema['pandas_version'] = '0.20.0'
|
||
|
return schema
|
||
|
|
||
|
|
||
|
def parse_table_schema(json, precise_float):
|
||
|
"""
|
||
|
Builds a DataFrame from a given schema
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
json :
|
||
|
A JSON table schema
|
||
|
precise_float : boolean
|
||
|
Flag controlling precision when decoding string to double values, as
|
||
|
dictated by ``read_json``
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
df : DataFrame
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
NotImplementedError
|
||
|
If the JSON table schema contains either timezone or timedelta data
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Because :func:`DataFrame.to_json` uses the string 'index' to denote a
|
||
|
name-less :class:`Index`, this function sets the name of the returned
|
||
|
:class:`DataFrame` to ``None`` when said string is encountered with a
|
||
|
normal :class:`Index`. For a :class:`MultiIndex`, the same limitation
|
||
|
applies to any strings beginning with 'level_'. Therefore, an
|
||
|
:class:`Index` name of 'index' and :class:`MultiIndex` names starting
|
||
|
with 'level_' are not supported.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
build_table_schema : inverse function
|
||
|
pandas.read_json
|
||
|
"""
|
||
|
table = loads(json, precise_float=precise_float)
|
||
|
col_order = [field['name'] for field in table['schema']['fields']]
|
||
|
df = DataFrame(table['data'], columns=col_order)[col_order]
|
||
|
|
||
|
dtypes = {field['name']: convert_json_field_to_pandas_type(field)
|
||
|
for field in table['schema']['fields']}
|
||
|
|
||
|
# Cannot directly use as_type with timezone data on object; raise for now
|
||
|
if any(str(x).startswith('datetime64[ns, ') for x in dtypes.values()):
|
||
|
raise NotImplementedError('table="orient" can not yet read timezone '
|
||
|
'data')
|
||
|
|
||
|
# No ISO constructor for Timedelta as of yet, so need to raise
|
||
|
if 'timedelta64' in dtypes.values():
|
||
|
raise NotImplementedError('table="orient" can not yet read '
|
||
|
'ISO-formatted Timedelta data')
|
||
|
|
||
|
df = df.astype(dtypes)
|
||
|
|
||
|
df = df.set_index(table['schema']['primaryKey'])
|
||
|
if len(df.index.names) == 1:
|
||
|
if df.index.name == 'index':
|
||
|
df.index.name = None
|
||
|
else:
|
||
|
df.index.names = [None if x.startswith('level_') else x for x in
|
||
|
df.index.names]
|
||
|
|
||
|
return df
|