laywerrobot/lib/python3.6/site-packages/nltk/test/ccg_semantics.doctest
2020-08-27 21:55:39 +02:00

553 lines
30 KiB
Text

.. Copyright (C) 2001-2018 NLTK Project
.. For license information, see LICENSE.TXT
==============================================
Combinatory Categorial Grammar with semantics
==============================================
-----
Chart
-----
>>> from nltk.ccg import chart, lexicon
>>> from nltk.ccg.chart import printCCGDerivation
No semantics
-------------------
>>> lex = lexicon.fromstring('''
... :- S, NP, N
... She => NP
... has => (S\\NP)/NP
... books => NP
... ''',
... False)
>>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
>>> parses = list(parser.parse("She has books".split()))
>>> print(str(len(parses)) + " parses")
3 parses
>>> printCCGDerivation(parses[0])
She has books
NP ((S\NP)/NP) NP
-------------------->
(S\NP)
-------------------------<
S
>>> printCCGDerivation(parses[1])
She has books
NP ((S\NP)/NP) NP
----->T
(S/(S\NP))
-------------------->
(S\NP)
------------------------->
S
>>> printCCGDerivation(parses[2])
She has books
NP ((S\NP)/NP) NP
----->T
(S/(S\NP))
------------------>B
(S/NP)
------------------------->
S
Simple semantics
-------------------
>>> lex = lexicon.fromstring('''
... :- S, NP, N
... She => NP {she}
... has => (S\\NP)/NP {\\x y.have(y, x)}
... a => NP/N {\\P.exists z.P(z)}
... book => N {book}
... ''',
... True)
>>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
>>> parses = list(parser.parse("She has a book".split()))
>>> print(str(len(parses)) + " parses")
7 parses
>>> printCCGDerivation(parses[0])
She has a book
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
------------------------------------->
NP {exists z.book(z)}
------------------------------------------------------------------->
(S\NP) {\y.have(y,exists z.book(z))}
-----------------------------------------------------------------------------<
S {have(she,exists z.book(z))}
>>> printCCGDerivation(parses[1])
She has a book
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
--------------------------------------------------------->B
((S\NP)/N) {\P y.have(y,exists z.P(z))}
------------------------------------------------------------------->
(S\NP) {\y.have(y,exists z.book(z))}
-----------------------------------------------------------------------------<
S {have(she,exists z.book(z))}
>>> printCCGDerivation(parses[2])
She has a book
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
---------->T
(S/(S\NP)) {\F.F(she)}
------------------------------------->
NP {exists z.book(z)}
------------------------------------------------------------------->
(S\NP) {\y.have(y,exists z.book(z))}
----------------------------------------------------------------------------->
S {have(she,exists z.book(z))}
>>> printCCGDerivation(parses[3])
She has a book
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
---------->T
(S/(S\NP)) {\F.F(she)}
--------------------------------------------------------->B
((S\NP)/N) {\P y.have(y,exists z.P(z))}
------------------------------------------------------------------->
(S\NP) {\y.have(y,exists z.book(z))}
----------------------------------------------------------------------------->
S {have(she,exists z.book(z))}
>>> printCCGDerivation(parses[4])
She has a book
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
---------->T
(S/(S\NP)) {\F.F(she)}
---------------------------------------->B
(S/NP) {\x.have(she,x)}
------------------------------------->
NP {exists z.book(z)}
----------------------------------------------------------------------------->
S {have(she,exists z.book(z))}
>>> printCCGDerivation(parses[5])
She has a book
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
---------->T
(S/(S\NP)) {\F.F(she)}
--------------------------------------------------------->B
((S\NP)/N) {\P y.have(y,exists z.P(z))}
------------------------------------------------------------------->B
(S/N) {\P.have(she,exists z.P(z))}
----------------------------------------------------------------------------->
S {have(she,exists z.book(z))}
>>> printCCGDerivation(parses[6])
She has a book
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
---------->T
(S/(S\NP)) {\F.F(she)}
---------------------------------------->B
(S/NP) {\x.have(she,x)}
------------------------------------------------------------------->B
(S/N) {\P.have(she,exists z.P(z))}
----------------------------------------------------------------------------->
S {have(she,exists z.book(z))}
Complex semantics
-------------------
>>> lex = lexicon.fromstring('''
... :- S, NP, N
... She => NP {she}
... has => (S\\NP)/NP {\\x y.have(y, x)}
... a => ((S\\NP)\\((S\\NP)/NP))/N {\\P R x.(exists z.P(z) & R(z,x))}
... book => N {book}
... ''',
... True)
>>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
>>> parses = list(parser.parse("She has a book".split()))
>>> print(str(len(parses)) + " parses")
2 parses
>>> printCCGDerivation(parses[0])
She has a book
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (((S\NP)\((S\NP)/NP))/N) {\P R x.(exists z.P(z) & R(z,x))} N {book}
---------------------------------------------------------------------->
((S\NP)\((S\NP)/NP)) {\R x.(exists z.book(z) & R(z,x))}
----------------------------------------------------------------------------------------------------<
(S\NP) {\x.(exists z.book(z) & have(x,z))}
--------------------------------------------------------------------------------------------------------------<
S {(exists z.book(z) & have(she,z))}
>>> printCCGDerivation(parses[1])
She has a book
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (((S\NP)\((S\NP)/NP))/N) {\P R x.(exists z.P(z) & R(z,x))} N {book}
---------->T
(S/(S\NP)) {\F.F(she)}
---------------------------------------------------------------------->
((S\NP)\((S\NP)/NP)) {\R x.(exists z.book(z) & R(z,x))}
----------------------------------------------------------------------------------------------------<
(S\NP) {\x.(exists z.book(z) & have(x,z))}
-------------------------------------------------------------------------------------------------------------->
S {(exists z.book(z) & have(she,z))}
Using conjunctions
---------------------
# TODO: The semantics of "and" should have been more flexible
>>> lex = lexicon.fromstring('''
... :- S, NP, N
... I => NP {I}
... cook => (S\\NP)/NP {\\x y.cook(x,y)}
... and => var\\.,var/.,var {\\P Q x y.(P(x,y) & Q(x,y))}
... eat => (S\\NP)/NP {\\x y.eat(x,y)}
... the => NP/N {\\x.the(x)}
... bacon => N {bacon}
... ''',
... True)
>>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
>>> parses = list(parser.parse("I cook and eat the bacon".split()))
>>> print(str(len(parses)) + " parses")
7 parses
>>> printCCGDerivation(parses[0])
I cook and eat the bacon
NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
------------------------------------------------------------------------------------->
(((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
-------------------------------------------------------------------------------------------------------------------<
((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
------------------------------->
NP {the(bacon)}
-------------------------------------------------------------------------------------------------------------------------------------------------->
(S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))}
----------------------------------------------------------------------------------------------------------------------------------------------------------<
S {(eat(the(bacon),I) & cook(the(bacon),I))}
>>> printCCGDerivation(parses[1])
I cook and eat the bacon
NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
------------------------------------------------------------------------------------->
(((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
-------------------------------------------------------------------------------------------------------------------<
((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
--------------------------------------------------------------------------------------------------------------------------------------->B
((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))}
-------------------------------------------------------------------------------------------------------------------------------------------------->
(S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))}
----------------------------------------------------------------------------------------------------------------------------------------------------------<
S {(eat(the(bacon),I) & cook(the(bacon),I))}
>>> printCCGDerivation(parses[2])
I cook and eat the bacon
NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
-------->T
(S/(S\NP)) {\F.F(I)}
------------------------------------------------------------------------------------->
(((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
-------------------------------------------------------------------------------------------------------------------<
((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
------------------------------->
NP {the(bacon)}
-------------------------------------------------------------------------------------------------------------------------------------------------->
(S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))}
---------------------------------------------------------------------------------------------------------------------------------------------------------->
S {(eat(the(bacon),I) & cook(the(bacon),I))}
>>> printCCGDerivation(parses[3])
I cook and eat the bacon
NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
-------->T
(S/(S\NP)) {\F.F(I)}
------------------------------------------------------------------------------------->
(((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
-------------------------------------------------------------------------------------------------------------------<
((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
--------------------------------------------------------------------------------------------------------------------------------------->B
((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))}
-------------------------------------------------------------------------------------------------------------------------------------------------->
(S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))}
---------------------------------------------------------------------------------------------------------------------------------------------------------->
S {(eat(the(bacon),I) & cook(the(bacon),I))}
>>> printCCGDerivation(parses[4])
I cook and eat the bacon
NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
-------->T
(S/(S\NP)) {\F.F(I)}
------------------------------------------------------------------------------------->
(((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
-------------------------------------------------------------------------------------------------------------------<
((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
--------------------------------------------------------------------------------------------------------------------------->B
(S/NP) {\x.(eat(x,I) & cook(x,I))}
------------------------------->
NP {the(bacon)}
---------------------------------------------------------------------------------------------------------------------------------------------------------->
S {(eat(the(bacon),I) & cook(the(bacon),I))}
>>> printCCGDerivation(parses[5])
I cook and eat the bacon
NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
-------->T
(S/(S\NP)) {\F.F(I)}
------------------------------------------------------------------------------------->
(((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
-------------------------------------------------------------------------------------------------------------------<
((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
--------------------------------------------------------------------------------------------------------------------------------------->B
((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))}
----------------------------------------------------------------------------------------------------------------------------------------------->B
(S/N) {\x.(eat(the(x),I) & cook(the(x),I))}
---------------------------------------------------------------------------------------------------------------------------------------------------------->
S {(eat(the(bacon),I) & cook(the(bacon),I))}
>>> printCCGDerivation(parses[6])
I cook and eat the bacon
NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
-------->T
(S/(S\NP)) {\F.F(I)}
------------------------------------------------------------------------------------->
(((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
-------------------------------------------------------------------------------------------------------------------<
((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
--------------------------------------------------------------------------------------------------------------------------->B
(S/NP) {\x.(eat(x,I) & cook(x,I))}
----------------------------------------------------------------------------------------------------------------------------------------------->B
(S/N) {\x.(eat(the(x),I) & cook(the(x),I))}
---------------------------------------------------------------------------------------------------------------------------------------------------------->
S {(eat(the(bacon),I) & cook(the(bacon),I))}
Tests from published papers
------------------------------
An example from "CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank", Hockenmaier and Steedman, 2007, Page 359, https://www.aclweb.org/anthology/J/J07/J07-3004.pdf
>>> lex = lexicon.fromstring('''
... :- S, NP
... I => NP {I}
... give => ((S\\NP)/NP)/NP {\\x y z.give(y,x,z)}
... them => NP {them}
... money => NP {money}
... ''',
... True)
>>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
>>> parses = list(parser.parse("I give them money".split()))
>>> print(str(len(parses)) + " parses")
3 parses
>>> printCCGDerivation(parses[0])
I give them money
NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money}
-------------------------------------------------->
((S\NP)/NP) {\y z.give(y,them,z)}
-------------------------------------------------------------->
(S\NP) {\z.give(money,them,z)}
----------------------------------------------------------------------<
S {give(money,them,I)}
>>> printCCGDerivation(parses[1])
I give them money
NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money}
-------->T
(S/(S\NP)) {\F.F(I)}
-------------------------------------------------->
((S\NP)/NP) {\y z.give(y,them,z)}
-------------------------------------------------------------->
(S\NP) {\z.give(money,them,z)}
---------------------------------------------------------------------->
S {give(money,them,I)}
>>> printCCGDerivation(parses[2])
I give them money
NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money}
-------->T
(S/(S\NP)) {\F.F(I)}
-------------------------------------------------->
((S\NP)/NP) {\y z.give(y,them,z)}
---------------------------------------------------------->B
(S/NP) {\y.give(y,them,I)}
---------------------------------------------------------------------->
S {give(money,them,I)}
An example from "CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank", Hockenmaier and Steedman, 2007, Page 359, https://www.aclweb.org/anthology/J/J07/J07-3004.pdf
>>> lex = lexicon.fromstring('''
... :- N, NP, S
... money => N {money}
... that => (N\\N)/(S/NP) {\\P Q x.(P(x) & Q(x))}
... I => NP {I}
... give => ((S\\NP)/NP)/NP {\\x y z.give(y,x,z)}
... them => NP {them}
... ''',
... True)
>>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
>>> parses = list(parser.parse("money that I give them".split()))
>>> print(str(len(parses)) + " parses")
3 parses
>>> printCCGDerivation(parses[0])
money that I give them
N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them}
-------->T
(S/(S\NP)) {\F.F(I)}
-------------------------------------------------->
((S\NP)/NP) {\y z.give(y,them,z)}
---------------------------------------------------------->B
(S/NP) {\y.give(y,them,I)}
------------------------------------------------------------------------------------------------->
(N\N) {\Q x.(give(x,them,I) & Q(x))}
------------------------------------------------------------------------------------------------------------<
N {\x.(give(x,them,I) & money(x))}
>>> printCCGDerivation(parses[1])
money that I give them
N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them}
----------->T
(N/(N\N)) {\F.F(money)}
-------->T
(S/(S\NP)) {\F.F(I)}
-------------------------------------------------->
((S\NP)/NP) {\y z.give(y,them,z)}
---------------------------------------------------------->B
(S/NP) {\y.give(y,them,I)}
------------------------------------------------------------------------------------------------->
(N\N) {\Q x.(give(x,them,I) & Q(x))}
------------------------------------------------------------------------------------------------------------>
N {\x.(give(x,them,I) & money(x))}
>>> printCCGDerivation(parses[2])
money that I give them
N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them}
----------->T
(N/(N\N)) {\F.F(money)}
-------------------------------------------------->B
(N/(S/NP)) {\P x.(P(x) & money(x))}
-------->T
(S/(S\NP)) {\F.F(I)}
-------------------------------------------------->
((S\NP)/NP) {\y z.give(y,them,z)}
---------------------------------------------------------->B
(S/NP) {\y.give(y,them,I)}
------------------------------------------------------------------------------------------------------------>
N {\x.(give(x,them,I) & money(x))}
-------
Lexicon
-------
>>> from nltk.ccg import lexicon
Parse lexicon with semantics
>>> print(str(lexicon.fromstring(
... '''
... :- S,NP
...
... IntransVsg :: S\\NP[sg]
...
... sleeps => IntransVsg {\\x.sleep(x)}
... eats => S\\NP[sg]/NP {\\x y.eat(x,y)}
...
... and => var\\var/var {\\x y.x & y}
... ''',
... True
... )))
and => ((_var0\_var0)/_var0) {(\x y.x & y)}
eats => ((S\NP['sg'])/NP) {\x y.eat(x,y)}
sleeps => (S\NP['sg']) {\x.sleep(x)}
Parse lexicon without semantics
>>> print(str(lexicon.fromstring(
... '''
... :- S,NP
...
... IntransVsg :: S\\NP[sg]
...
... sleeps => IntransVsg
... eats => S\\NP[sg]/NP {sem=\\x y.eat(x,y)}
...
... and => var\\var/var
... ''',
... False
... )))
and => ((_var0\_var0)/_var0)
eats => ((S\NP['sg'])/NP)
sleeps => (S\NP['sg'])
Semantics are missing
>>> print(str(lexicon.fromstring(
... '''
... :- S,NP
...
... eats => S\\NP[sg]/NP
... ''',
... True
... )))
Traceback (most recent call last):
...
AssertionError: eats => S\NP[sg]/NP must contain semantics because include_semantics is set to True
------------------------------------
CCG combinator semantics computation
------------------------------------
>>> from nltk.sem.logic import *
>>> from nltk.ccg.logic import *
>>> read_expr = Expression.fromstring
Compute semantics from function application
>>> print(str(compute_function_semantics(read_expr(r'\x.P(x)'), read_expr(r'book'))))
P(book)
>>> print(str(compute_function_semantics(read_expr(r'\P.P(book)'), read_expr(r'read'))))
read(book)
>>> print(str(compute_function_semantics(read_expr(r'\P.P(book)'), read_expr(r'\x.read(x)'))))
read(book)
Compute semantics from composition
>>> print(str(compute_composition_semantics(read_expr(r'\x.P(x)'), read_expr(r'\x.Q(x)'))))
\x.P(Q(x))
>>> print(str(compute_composition_semantics(read_expr(r'\x.P(x)'), read_expr(r'read'))))
Traceback (most recent call last):
...
AssertionError: `read` must be a lambda expression
Compute semantics from substitution
>>> print(str(compute_substitution_semantics(read_expr(r'\x y.P(x,y)'), read_expr(r'\x.Q(x)'))))
\x.P(x,Q(x))
>>> print(str(compute_substitution_semantics(read_expr(r'\x.P(x)'), read_expr(r'read'))))
Traceback (most recent call last):
...
AssertionError: `\x.P(x)` must be a lambda expression with 2 arguments
Compute type-raise semantics
>>> print(str(compute_type_raised_semantics(read_expr(r'\x.P(x)'))))
\F x.F(P(x))
>>> print(str(compute_type_raised_semantics(read_expr(r'\x.F(x)'))))
\F1 x.F1(F(x))
>>> print(str(compute_type_raised_semantics(read_expr(r'\x y z.P(x,y,z)'))))
\F x y z.F(P(x,y,z))