.. Copyright (C) 2001-2018 NLTK Project .. For license information, see LICENSE.TXT ============================================== Combinatory Categorial Grammar with semantics ============================================== ----- Chart ----- >>> from nltk.ccg import chart, lexicon >>> from nltk.ccg.chart import printCCGDerivation No semantics ------------------- >>> lex = lexicon.fromstring(''' ... :- S, NP, N ... She => NP ... has => (S\\NP)/NP ... books => NP ... ''', ... False) >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet) >>> parses = list(parser.parse("She has books".split())) >>> print(str(len(parses)) + " parses") 3 parses >>> printCCGDerivation(parses[0]) She has books NP ((S\NP)/NP) NP --------------------> (S\NP) -------------------------< S >>> printCCGDerivation(parses[1]) She has books NP ((S\NP)/NP) NP ----->T (S/(S\NP)) --------------------> (S\NP) -------------------------> S >>> printCCGDerivation(parses[2]) She has books NP ((S\NP)/NP) NP ----->T (S/(S\NP)) ------------------>B (S/NP) -------------------------> S Simple semantics ------------------- >>> lex = lexicon.fromstring(''' ... :- S, NP, N ... She => NP {she} ... has => (S\\NP)/NP {\\x y.have(y, x)} ... a => NP/N {\\P.exists z.P(z)} ... book => N {book} ... ''', ... True) >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet) >>> parses = list(parser.parse("She has a book".split())) >>> print(str(len(parses)) + " parses") 7 parses >>> printCCGDerivation(parses[0]) She has a book NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book} -------------------------------------> NP {exists z.book(z)} -------------------------------------------------------------------> (S\NP) {\y.have(y,exists z.book(z))} -----------------------------------------------------------------------------< S {have(she,exists z.book(z))} >>> printCCGDerivation(parses[1]) She has a book NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book} --------------------------------------------------------->B ((S\NP)/N) {\P y.have(y,exists z.P(z))} -------------------------------------------------------------------> (S\NP) {\y.have(y,exists z.book(z))} -----------------------------------------------------------------------------< S {have(she,exists z.book(z))} >>> printCCGDerivation(parses[2]) She has a book NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book} ---------->T (S/(S\NP)) {\F.F(she)} -------------------------------------> NP {exists z.book(z)} -------------------------------------------------------------------> (S\NP) {\y.have(y,exists z.book(z))} -----------------------------------------------------------------------------> S {have(she,exists z.book(z))} >>> printCCGDerivation(parses[3]) She has a book NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book} ---------->T (S/(S\NP)) {\F.F(she)} --------------------------------------------------------->B ((S\NP)/N) {\P y.have(y,exists z.P(z))} -------------------------------------------------------------------> (S\NP) {\y.have(y,exists z.book(z))} -----------------------------------------------------------------------------> S {have(she,exists z.book(z))} >>> printCCGDerivation(parses[4]) She has a book NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book} ---------->T (S/(S\NP)) {\F.F(she)} ---------------------------------------->B (S/NP) {\x.have(she,x)} -------------------------------------> NP {exists z.book(z)} -----------------------------------------------------------------------------> S {have(she,exists z.book(z))} >>> printCCGDerivation(parses[5]) She has a book NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book} ---------->T (S/(S\NP)) {\F.F(she)} --------------------------------------------------------->B ((S\NP)/N) {\P y.have(y,exists z.P(z))} ------------------------------------------------------------------->B (S/N) {\P.have(she,exists z.P(z))} -----------------------------------------------------------------------------> S {have(she,exists z.book(z))} >>> printCCGDerivation(parses[6]) She has a book NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book} ---------->T (S/(S\NP)) {\F.F(she)} ---------------------------------------->B (S/NP) {\x.have(she,x)} ------------------------------------------------------------------->B (S/N) {\P.have(she,exists z.P(z))} -----------------------------------------------------------------------------> S {have(she,exists z.book(z))} Complex semantics ------------------- >>> lex = lexicon.fromstring(''' ... :- S, NP, N ... She => NP {she} ... has => (S\\NP)/NP {\\x y.have(y, x)} ... a => ((S\\NP)\\((S\\NP)/NP))/N {\\P R x.(exists z.P(z) & R(z,x))} ... book => N {book} ... ''', ... True) >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet) >>> parses = list(parser.parse("She has a book".split())) >>> print(str(len(parses)) + " parses") 2 parses >>> printCCGDerivation(parses[0]) She has a book NP {she} ((S\NP)/NP) {\x y.have(y,x)} (((S\NP)\((S\NP)/NP))/N) {\P R x.(exists z.P(z) & R(z,x))} N {book} ----------------------------------------------------------------------> ((S\NP)\((S\NP)/NP)) {\R x.(exists z.book(z) & R(z,x))} ----------------------------------------------------------------------------------------------------< (S\NP) {\x.(exists z.book(z) & have(x,z))} --------------------------------------------------------------------------------------------------------------< S {(exists z.book(z) & have(she,z))} >>> printCCGDerivation(parses[1]) She has a book NP {she} ((S\NP)/NP) {\x y.have(y,x)} (((S\NP)\((S\NP)/NP))/N) {\P R x.(exists z.P(z) & R(z,x))} N {book} ---------->T (S/(S\NP)) {\F.F(she)} ----------------------------------------------------------------------> ((S\NP)\((S\NP)/NP)) {\R x.(exists z.book(z) & R(z,x))} ----------------------------------------------------------------------------------------------------< (S\NP) {\x.(exists z.book(z) & have(x,z))} --------------------------------------------------------------------------------------------------------------> S {(exists z.book(z) & have(she,z))} Using conjunctions --------------------- # TODO: The semantics of "and" should have been more flexible >>> lex = lexicon.fromstring(''' ... :- S, NP, N ... I => NP {I} ... cook => (S\\NP)/NP {\\x y.cook(x,y)} ... and => var\\.,var/.,var {\\P Q x y.(P(x,y) & Q(x,y))} ... eat => (S\\NP)/NP {\\x y.eat(x,y)} ... the => NP/N {\\x.the(x)} ... bacon => N {bacon} ... ''', ... True) >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet) >>> parses = list(parser.parse("I cook and eat the bacon".split())) >>> print(str(len(parses)) + " parses") 7 parses >>> printCCGDerivation(parses[0]) I cook and eat the bacon NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon} -------------------------------------------------------------------------------------> (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))} -------------------------------------------------------------------------------------------------------------------< ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))} -------------------------------> NP {the(bacon)} --------------------------------------------------------------------------------------------------------------------------------------------------> (S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))} ----------------------------------------------------------------------------------------------------------------------------------------------------------< S {(eat(the(bacon),I) & cook(the(bacon),I))} >>> printCCGDerivation(parses[1]) I cook and eat the bacon NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon} -------------------------------------------------------------------------------------> (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))} -------------------------------------------------------------------------------------------------------------------< ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))} --------------------------------------------------------------------------------------------------------------------------------------->B ((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))} --------------------------------------------------------------------------------------------------------------------------------------------------> (S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))} ----------------------------------------------------------------------------------------------------------------------------------------------------------< S {(eat(the(bacon),I) & cook(the(bacon),I))} >>> printCCGDerivation(parses[2]) I cook and eat the bacon NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon} -------->T (S/(S\NP)) {\F.F(I)} -------------------------------------------------------------------------------------> (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))} -------------------------------------------------------------------------------------------------------------------< ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))} -------------------------------> NP {the(bacon)} --------------------------------------------------------------------------------------------------------------------------------------------------> (S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))} ----------------------------------------------------------------------------------------------------------------------------------------------------------> S {(eat(the(bacon),I) & cook(the(bacon),I))} >>> printCCGDerivation(parses[3]) I cook and eat the bacon NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon} -------->T (S/(S\NP)) {\F.F(I)} -------------------------------------------------------------------------------------> (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))} -------------------------------------------------------------------------------------------------------------------< ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))} --------------------------------------------------------------------------------------------------------------------------------------->B ((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))} --------------------------------------------------------------------------------------------------------------------------------------------------> (S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))} ----------------------------------------------------------------------------------------------------------------------------------------------------------> S {(eat(the(bacon),I) & cook(the(bacon),I))} >>> printCCGDerivation(parses[4]) I cook and eat the bacon NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon} -------->T (S/(S\NP)) {\F.F(I)} -------------------------------------------------------------------------------------> (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))} -------------------------------------------------------------------------------------------------------------------< ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))} --------------------------------------------------------------------------------------------------------------------------->B (S/NP) {\x.(eat(x,I) & cook(x,I))} -------------------------------> NP {the(bacon)} ----------------------------------------------------------------------------------------------------------------------------------------------------------> S {(eat(the(bacon),I) & cook(the(bacon),I))} >>> printCCGDerivation(parses[5]) I cook and eat the bacon NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon} -------->T (S/(S\NP)) {\F.F(I)} -------------------------------------------------------------------------------------> (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))} -------------------------------------------------------------------------------------------------------------------< ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))} --------------------------------------------------------------------------------------------------------------------------------------->B ((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))} ----------------------------------------------------------------------------------------------------------------------------------------------->B (S/N) {\x.(eat(the(x),I) & cook(the(x),I))} ----------------------------------------------------------------------------------------------------------------------------------------------------------> S {(eat(the(bacon),I) & cook(the(bacon),I))} >>> printCCGDerivation(parses[6]) I cook and eat the bacon NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon} -------->T (S/(S\NP)) {\F.F(I)} -------------------------------------------------------------------------------------> (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))} -------------------------------------------------------------------------------------------------------------------< ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))} --------------------------------------------------------------------------------------------------------------------------->B (S/NP) {\x.(eat(x,I) & cook(x,I))} ----------------------------------------------------------------------------------------------------------------------------------------------->B (S/N) {\x.(eat(the(x),I) & cook(the(x),I))} ----------------------------------------------------------------------------------------------------------------------------------------------------------> S {(eat(the(bacon),I) & cook(the(bacon),I))} Tests from published papers ------------------------------ An example from "CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank", Hockenmaier and Steedman, 2007, Page 359, https://www.aclweb.org/anthology/J/J07/J07-3004.pdf >>> lex = lexicon.fromstring(''' ... :- S, NP ... I => NP {I} ... give => ((S\\NP)/NP)/NP {\\x y z.give(y,x,z)} ... them => NP {them} ... money => NP {money} ... ''', ... True) >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet) >>> parses = list(parser.parse("I give them money".split())) >>> print(str(len(parses)) + " parses") 3 parses >>> printCCGDerivation(parses[0]) I give them money NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money} --------------------------------------------------> ((S\NP)/NP) {\y z.give(y,them,z)} --------------------------------------------------------------> (S\NP) {\z.give(money,them,z)} ----------------------------------------------------------------------< S {give(money,them,I)} >>> printCCGDerivation(parses[1]) I give them money NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money} -------->T (S/(S\NP)) {\F.F(I)} --------------------------------------------------> ((S\NP)/NP) {\y z.give(y,them,z)} --------------------------------------------------------------> (S\NP) {\z.give(money,them,z)} ----------------------------------------------------------------------> S {give(money,them,I)} >>> printCCGDerivation(parses[2]) I give them money NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money} -------->T (S/(S\NP)) {\F.F(I)} --------------------------------------------------> ((S\NP)/NP) {\y z.give(y,them,z)} ---------------------------------------------------------->B (S/NP) {\y.give(y,them,I)} ----------------------------------------------------------------------> S {give(money,them,I)} An example from "CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank", Hockenmaier and Steedman, 2007, Page 359, https://www.aclweb.org/anthology/J/J07/J07-3004.pdf >>> lex = lexicon.fromstring(''' ... :- N, NP, S ... money => N {money} ... that => (N\\N)/(S/NP) {\\P Q x.(P(x) & Q(x))} ... I => NP {I} ... give => ((S\\NP)/NP)/NP {\\x y z.give(y,x,z)} ... them => NP {them} ... ''', ... True) >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet) >>> parses = list(parser.parse("money that I give them".split())) >>> print(str(len(parses)) + " parses") 3 parses >>> printCCGDerivation(parses[0]) money that I give them N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} -------->T (S/(S\NP)) {\F.F(I)} --------------------------------------------------> ((S\NP)/NP) {\y z.give(y,them,z)} ---------------------------------------------------------->B (S/NP) {\y.give(y,them,I)} -------------------------------------------------------------------------------------------------> (N\N) {\Q x.(give(x,them,I) & Q(x))} ------------------------------------------------------------------------------------------------------------< N {\x.(give(x,them,I) & money(x))} >>> printCCGDerivation(parses[1]) money that I give them N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} ----------->T (N/(N\N)) {\F.F(money)} -------->T (S/(S\NP)) {\F.F(I)} --------------------------------------------------> ((S\NP)/NP) {\y z.give(y,them,z)} ---------------------------------------------------------->B (S/NP) {\y.give(y,them,I)} -------------------------------------------------------------------------------------------------> (N\N) {\Q x.(give(x,them,I) & Q(x))} ------------------------------------------------------------------------------------------------------------> N {\x.(give(x,them,I) & money(x))} >>> printCCGDerivation(parses[2]) money that I give them N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} ----------->T (N/(N\N)) {\F.F(money)} -------------------------------------------------->B (N/(S/NP)) {\P x.(P(x) & money(x))} -------->T (S/(S\NP)) {\F.F(I)} --------------------------------------------------> ((S\NP)/NP) {\y z.give(y,them,z)} ---------------------------------------------------------->B (S/NP) {\y.give(y,them,I)} ------------------------------------------------------------------------------------------------------------> N {\x.(give(x,them,I) & money(x))} ------- Lexicon ------- >>> from nltk.ccg import lexicon Parse lexicon with semantics >>> print(str(lexicon.fromstring( ... ''' ... :- S,NP ... ... IntransVsg :: S\\NP[sg] ... ... sleeps => IntransVsg {\\x.sleep(x)} ... eats => S\\NP[sg]/NP {\\x y.eat(x,y)} ... ... and => var\\var/var {\\x y.x & y} ... ''', ... True ... ))) and => ((_var0\_var0)/_var0) {(\x y.x & y)} eats => ((S\NP['sg'])/NP) {\x y.eat(x,y)} sleeps => (S\NP['sg']) {\x.sleep(x)} Parse lexicon without semantics >>> print(str(lexicon.fromstring( ... ''' ... :- S,NP ... ... IntransVsg :: S\\NP[sg] ... ... sleeps => IntransVsg ... eats => S\\NP[sg]/NP {sem=\\x y.eat(x,y)} ... ... and => var\\var/var ... ''', ... False ... ))) and => ((_var0\_var0)/_var0) eats => ((S\NP['sg'])/NP) sleeps => (S\NP['sg']) Semantics are missing >>> print(str(lexicon.fromstring( ... ''' ... :- S,NP ... ... eats => S\\NP[sg]/NP ... ''', ... True ... ))) Traceback (most recent call last): ... AssertionError: eats => S\NP[sg]/NP must contain semantics because include_semantics is set to True ------------------------------------ CCG combinator semantics computation ------------------------------------ >>> from nltk.sem.logic import * >>> from nltk.ccg.logic import * >>> read_expr = Expression.fromstring Compute semantics from function application >>> print(str(compute_function_semantics(read_expr(r'\x.P(x)'), read_expr(r'book')))) P(book) >>> print(str(compute_function_semantics(read_expr(r'\P.P(book)'), read_expr(r'read')))) read(book) >>> print(str(compute_function_semantics(read_expr(r'\P.P(book)'), read_expr(r'\x.read(x)')))) read(book) Compute semantics from composition >>> print(str(compute_composition_semantics(read_expr(r'\x.P(x)'), read_expr(r'\x.Q(x)')))) \x.P(Q(x)) >>> print(str(compute_composition_semantics(read_expr(r'\x.P(x)'), read_expr(r'read')))) Traceback (most recent call last): ... AssertionError: `read` must be a lambda expression Compute semantics from substitution >>> print(str(compute_substitution_semantics(read_expr(r'\x y.P(x,y)'), read_expr(r'\x.Q(x)')))) \x.P(x,Q(x)) >>> print(str(compute_substitution_semantics(read_expr(r'\x.P(x)'), read_expr(r'read')))) Traceback (most recent call last): ... AssertionError: `\x.P(x)` must be a lambda expression with 2 arguments Compute type-raise semantics >>> print(str(compute_type_raised_semantics(read_expr(r'\x.P(x)')))) \F x.F(P(x)) >>> print(str(compute_type_raised_semantics(read_expr(r'\x.F(x)')))) \F1 x.F1(F(x)) >>> print(str(compute_type_raised_semantics(read_expr(r'\x y z.P(x,y,z)')))) \F x y z.F(P(x,y,z))