laywerrobot/lib/python3.6/site-packages/gensim/test/test_translation_matrix.py
2020-08-27 21:55:39 +02:00

118 lines
5 KiB
Python

#!/usr/bin/env python
# encoding: utf-8
from collections import namedtuple
import unittest
import math
import numpy as np
from scipy.spatial.distance import cosine
from gensim.models.doc2vec import Doc2Vec
from gensim import utils
from gensim.models import translation_matrix
from gensim.models import KeyedVectors
from gensim.test.utils import datapath, get_tmpfile
class TestTranslationMatrix(unittest.TestCase):
def setUp(self):
self.source_word_vec_file = datapath("EN.1-10.cbow1_wind5_hs0_neg10_size300_smpl1e-05.txt")
self.target_word_vec_file = datapath("IT.1-10.cbow1_wind5_hs0_neg10_size300_smpl1e-05.txt")
self.word_pairs = [("one", "uno"), ("two", "due"), ("three", "tre"),
("four", "quattro"), ("five", "cinque"), ("seven", "sette"), ("eight", "otto"),
("dog", "cane"), ("pig", "maiale"), ("fish", "cavallo"), ("birds", "uccelli"),
("apple", "mela"), ("orange", "arancione"), ("grape", "acino"), ("banana", "banana")
]
self.test_word_pairs = [("ten", "dieci"), ("cat", "gatto")]
self.source_word_vec = KeyedVectors.load_word2vec_format(self.source_word_vec_file, binary=False)
self.target_word_vec = KeyedVectors.load_word2vec_format(self.target_word_vec_file, binary=False)
def test_translation_matrix(self):
model = translation_matrix.TranslationMatrix(self.source_word_vec, self.target_word_vec, self.word_pairs)
model.train(self.word_pairs)
self.assertEqual(model.translation_matrix.shape, (300, 300))
def testPersistence(self):
"""Test storing/loading the entire model."""
tmpf = get_tmpfile('transmat-en-it.pkl')
model = translation_matrix.TranslationMatrix(self.source_word_vec, self.target_word_vec, self.word_pairs)
model.train(self.word_pairs)
model.save(tmpf)
loaded_model = translation_matrix.TranslationMatrix.load(tmpf)
self.assertTrue(np.allclose(model.translation_matrix, loaded_model.translation_matrix))
def test_translate_nn(self):
# Test the nearest neighbor retrieval method
model = translation_matrix.TranslationMatrix(self.source_word_vec, self.target_word_vec, self.word_pairs)
model.train(self.word_pairs)
test_source_word, test_target_word = zip(*self.test_word_pairs)
translated_words = model.translate(
test_source_word, topn=5, source_lang_vec=self.source_word_vec, target_lang_vec=self.target_word_vec
)
for idx, item in enumerate(self.test_word_pairs):
self.assertTrue(item[1] in translated_words[item[0]])
def test_translate_gc(self):
# Test globally corrected neighbour retrieval method
model = translation_matrix.TranslationMatrix(self.source_word_vec, self.target_word_vec, self.word_pairs)
model.train(self.word_pairs)
test_source_word, test_target_word = zip(*self.test_word_pairs)
translated_words = model.translate(
test_source_word, topn=5, gc=1, sample_num=3,
source_lang_vec=self.source_word_vec, target_lang_vec=self.target_word_vec
)
for idx, item in enumerate(self.test_word_pairs):
self.assertTrue(item[1] in translated_words[item[0]])
def read_sentiment_docs(filename):
sentiment_document = namedtuple('SentimentDocument', 'words tags')
alldocs = [] # will hold all docs in original order
with utils.smart_open(filename, encoding='utf-8') as alldata:
for line_no, line in enumerate(alldata):
tokens = utils.to_unicode(line).split()
words = tokens
tags = str(line_no)
alldocs.append(sentiment_document(words, tags))
return alldocs
class TestBackMappingTranslationMatrix(unittest.TestCase):
def setUp(self):
filename = datapath("alldata-id-10.txt")
train_docs = read_sentiment_docs(filename)
self.train_docs = train_docs
self.source_doc_vec_file = datapath("small_tag_doc_5_iter50")
self.target_doc_vec_file = datapath("large_tag_doc_10_iter50")
self.source_doc_vec = Doc2Vec.load(self.source_doc_vec_file)
self.target_doc_vec = Doc2Vec.load(self.target_doc_vec_file)
def test_translation_matrix(self):
model = translation_matrix.BackMappingTranslationMatrix(
self.source_doc_vec, self.target_doc_vec, self.train_docs[:5]
)
transmat = model.train(self.train_docs[:5])
self.assertEqual(transmat.shape, (100, 100))
def test_infer_vector(self):
model = translation_matrix.BackMappingTranslationMatrix(
self.source_doc_vec, self.target_doc_vec, self.train_docs[:5]
)
model.train(self.train_docs[:5])
infered_vec = model.infer_vector(self.target_doc_vec.docvecs[self.train_docs[5].tags])
self.assertEqual(infered_vec.shape, (100, ))
expected = 0.6453547135
eps = 1e-6
caculated = cosine(self.target_doc_vec.docvecs[self.train_docs[5].tags], infered_vec)
self.assertLessEqual(math.fabs(caculated - expected), eps)