#!/usr/bin/env python # encoding: utf-8 from collections import namedtuple import unittest import math import numpy as np from scipy.spatial.distance import cosine from gensim.models.doc2vec import Doc2Vec from gensim import utils from gensim.models import translation_matrix from gensim.models import KeyedVectors from gensim.test.utils import datapath, get_tmpfile class TestTranslationMatrix(unittest.TestCase): def setUp(self): self.source_word_vec_file = datapath("EN.1-10.cbow1_wind5_hs0_neg10_size300_smpl1e-05.txt") self.target_word_vec_file = datapath("IT.1-10.cbow1_wind5_hs0_neg10_size300_smpl1e-05.txt") self.word_pairs = [("one", "uno"), ("two", "due"), ("three", "tre"), ("four", "quattro"), ("five", "cinque"), ("seven", "sette"), ("eight", "otto"), ("dog", "cane"), ("pig", "maiale"), ("fish", "cavallo"), ("birds", "uccelli"), ("apple", "mela"), ("orange", "arancione"), ("grape", "acino"), ("banana", "banana") ] self.test_word_pairs = [("ten", "dieci"), ("cat", "gatto")] self.source_word_vec = KeyedVectors.load_word2vec_format(self.source_word_vec_file, binary=False) self.target_word_vec = KeyedVectors.load_word2vec_format(self.target_word_vec_file, binary=False) def test_translation_matrix(self): model = translation_matrix.TranslationMatrix(self.source_word_vec, self.target_word_vec, self.word_pairs) model.train(self.word_pairs) self.assertEqual(model.translation_matrix.shape, (300, 300)) def testPersistence(self): """Test storing/loading the entire model.""" tmpf = get_tmpfile('transmat-en-it.pkl') model = translation_matrix.TranslationMatrix(self.source_word_vec, self.target_word_vec, self.word_pairs) model.train(self.word_pairs) model.save(tmpf) loaded_model = translation_matrix.TranslationMatrix.load(tmpf) self.assertTrue(np.allclose(model.translation_matrix, loaded_model.translation_matrix)) def test_translate_nn(self): # Test the nearest neighbor retrieval method model = translation_matrix.TranslationMatrix(self.source_word_vec, self.target_word_vec, self.word_pairs) model.train(self.word_pairs) test_source_word, test_target_word = zip(*self.test_word_pairs) translated_words = model.translate( test_source_word, topn=5, source_lang_vec=self.source_word_vec, target_lang_vec=self.target_word_vec ) for idx, item in enumerate(self.test_word_pairs): self.assertTrue(item[1] in translated_words[item[0]]) def test_translate_gc(self): # Test globally corrected neighbour retrieval method model = translation_matrix.TranslationMatrix(self.source_word_vec, self.target_word_vec, self.word_pairs) model.train(self.word_pairs) test_source_word, test_target_word = zip(*self.test_word_pairs) translated_words = model.translate( test_source_word, topn=5, gc=1, sample_num=3, source_lang_vec=self.source_word_vec, target_lang_vec=self.target_word_vec ) for idx, item in enumerate(self.test_word_pairs): self.assertTrue(item[1] in translated_words[item[0]]) def read_sentiment_docs(filename): sentiment_document = namedtuple('SentimentDocument', 'words tags') alldocs = [] # will hold all docs in original order with utils.smart_open(filename, encoding='utf-8') as alldata: for line_no, line in enumerate(alldata): tokens = utils.to_unicode(line).split() words = tokens tags = str(line_no) alldocs.append(sentiment_document(words, tags)) return alldocs class TestBackMappingTranslationMatrix(unittest.TestCase): def setUp(self): filename = datapath("alldata-id-10.txt") train_docs = read_sentiment_docs(filename) self.train_docs = train_docs self.source_doc_vec_file = datapath("small_tag_doc_5_iter50") self.target_doc_vec_file = datapath("large_tag_doc_10_iter50") self.source_doc_vec = Doc2Vec.load(self.source_doc_vec_file) self.target_doc_vec = Doc2Vec.load(self.target_doc_vec_file) def test_translation_matrix(self): model = translation_matrix.BackMappingTranslationMatrix( self.source_doc_vec, self.target_doc_vec, self.train_docs[:5] ) transmat = model.train(self.train_docs[:5]) self.assertEqual(transmat.shape, (100, 100)) def test_infer_vector(self): model = translation_matrix.BackMappingTranslationMatrix( self.source_doc_vec, self.target_doc_vec, self.train_docs[:5] ) model.train(self.train_docs[:5]) infered_vec = model.infer_vector(self.target_doc_vec.docvecs[self.train_docs[5].tags]) self.assertEqual(infered_vec.shape, (100, )) expected = 0.6453547135 eps = 1e-6 caculated = cosine(self.target_doc_vec.docvecs[self.train_docs[5].tags], infered_vec) self.assertLessEqual(math.fabs(caculated - expected), eps)