laywerrobot/lib/python3.6/site-packages/gensim/test/test_similarities.py
2020-08-27 21:55:39 +02:00

695 lines
27 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2011 Radim Rehurek <radimrehurek@seznam.cz>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
"""
Automated tests for similarity algorithms (the similarities package).
"""
import logging
import unittest
import os
import numpy
import scipy
from smart_open import smart_open
from gensim.models import word2vec
from gensim.models import doc2vec
from gensim.models import KeyedVectors
from gensim.models import TfidfModel
from gensim import matutils, similarities
from gensim.models import Word2Vec, FastText
from gensim.test.utils import (datapath, get_tmpfile,
common_texts as texts, common_dictionary as dictionary, common_corpus as corpus)
try:
from pyemd import emd # noqa:F401
PYEMD_EXT = True
except ImportError:
PYEMD_EXT = False
sentences = [doc2vec.TaggedDocument(words, [i]) for i, words in enumerate(texts)]
class _TestSimilarityABC(object):
"""
Base class for SparseMatrixSimilarity and MatrixSimilarity unit tests.
"""
def factoryMethod(self):
"""Creates a SimilarityABC instance."""
return self.cls(corpus, num_features=len(dictionary))
def testFull(self, num_best=None, shardsize=100):
if self.cls == similarities.Similarity:
index = self.cls(None, corpus, num_features=len(dictionary), shardsize=shardsize)
else:
index = self.cls(corpus, num_features=len(dictionary))
if isinstance(index, similarities.MatrixSimilarity):
expected = numpy.array([
[0.57735026, 0.57735026, 0.57735026, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.40824831, 0.0, 0.40824831, 0.40824831, 0.40824831, 0.40824831, 0.40824831, 0.0, 0.0, 0.0, 0.0],
[0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.5, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.40824831, 0.0, 0.0, 0.0, 0.81649661, 0.0, 0.40824831, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.57735026, 0.57735026, 0.0, 0.0, 0.57735026, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1., 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.70710677, 0.70710677, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.57735026, 0.57735026],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.57735026],
], dtype=numpy.float32)
# HACK: dictionary can be in different order, so compare in sorted order
self.assertTrue(numpy.allclose(sorted(expected.flat), sorted(index.index.flat)))
index.num_best = num_best
query = corpus[0]
sims = index[query]
expected = [(0, 0.99999994), (2, 0.28867513), (3, 0.23570226), (1, 0.23570226)][: num_best]
# convert sims to full numpy arrays, so we can use allclose() and ignore
# ordering of items with the same similarity value
expected = matutils.sparse2full(expected, len(index))
if num_best is not None: # when num_best is None, sims is already a numpy array
sims = matutils.sparse2full(sims, len(index))
self.assertTrue(numpy.allclose(expected, sims))
if self.cls == similarities.Similarity:
index.destroy()
def testNumBest(self):
if self.cls == similarities.WmdSimilarity and not PYEMD_EXT:
return
for num_best in [None, 0, 1, 9, 1000]:
self.testFull(num_best=num_best)
def test_full2sparse_clipped(self):
vec = [0.8, 0.2, 0.0, 0.0, -0.1, -0.15]
expected = [(0, 0.80000000000000004), (1, 0.20000000000000001), (5, -0.14999999999999999)]
self.assertTrue(matutils.full2sparse_clipped(vec, topn=3), expected)
def test_scipy2scipy_clipped(self):
# Test for scipy vector/row
vec = [0.8, 0.2, 0.0, 0.0, -0.1, -0.15]
expected = [(0, 0.80000000000000004), (1, 0.20000000000000001), (5, -0.14999999999999999)]
vec_scipy = scipy.sparse.csr_matrix(vec)
vec_scipy_clipped = matutils.scipy2scipy_clipped(vec_scipy, topn=3)
self.assertTrue(scipy.sparse.issparse(vec_scipy_clipped))
self.assertTrue(matutils.scipy2sparse(vec_scipy_clipped), expected)
# Test for scipy matrix
vec = [0.8, 0.2, 0.0, 0.0, -0.1, -0.15]
expected = [(0, 0.80000000000000004), (1, 0.20000000000000001), (5, -0.14999999999999999)]
matrix_scipy = scipy.sparse.csr_matrix([vec] * 3)
matrix_scipy_clipped = matutils.scipy2scipy_clipped(matrix_scipy, topn=3)
self.assertTrue(scipy.sparse.issparse(matrix_scipy_clipped))
self.assertTrue([matutils.scipy2sparse(x) for x in matrix_scipy_clipped], [expected] * 3)
def testEmptyQuery(self):
index = self.factoryMethod()
query = []
try:
sims = index[query]
self.assertTrue(sims is not None)
except IndexError:
self.assertTrue(False)
def testChunking(self):
if self.cls == similarities.Similarity:
index = self.cls(None, corpus, num_features=len(dictionary), shardsize=5)
else:
index = self.cls(corpus, num_features=len(dictionary))
query = corpus[:3]
sims = index[query]
expected = numpy.array([
[0.99999994, 0.23570226, 0.28867513, 0.23570226, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.23570226, 1.0, 0.40824831, 0.33333334, 0.70710677, 0.0, 0.0, 0.0, 0.23570226],
[0.28867513, 0.40824831, 1.0, 0.61237246, 0.28867513, 0.0, 0.0, 0.0, 0.0]
], dtype=numpy.float32)
self.assertTrue(numpy.allclose(expected, sims))
# test the same thing but with num_best
index.num_best = 3
sims = index[query]
expected = [
[(0, 0.99999994), (2, 0.28867513), (1, 0.23570226)],
[(1, 1.0), (4, 0.70710677), (2, 0.40824831)],
[(2, 1.0), (3, 0.61237246), (1, 0.40824831)]
]
self.assertTrue(numpy.allclose(expected, sims))
if self.cls == similarities.Similarity:
index.destroy()
def testIter(self):
if self.cls == similarities.Similarity:
index = self.cls(None, corpus, num_features=len(dictionary), shardsize=5)
else:
index = self.cls(corpus, num_features=len(dictionary))
sims = [sim for sim in index]
expected = numpy.array([
[0.99999994, 0.23570226, 0.28867513, 0.23570226, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.23570226, 1.0, 0.40824831, 0.33333334, 0.70710677, 0.0, 0.0, 0.0, 0.23570226],
[0.28867513, 0.40824831, 1.0, 0.61237246, 0.28867513, 0.0, 0.0, 0.0, 0.0],
[0.23570226, 0.33333334, 0.61237246, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.70710677, 0.28867513, 0.0, 0.99999994, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.70710677, 0.57735026, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.70710677, 0.99999994, 0.81649655, 0.40824828],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.81649655, 0.99999994, 0.66666663],
[0.0, 0.23570226, 0.0, 0.0, 0.0, 0.0, 0.40824828, 0.66666663, 0.99999994]
], dtype=numpy.float32)
self.assertTrue(numpy.allclose(expected, sims))
if self.cls == similarities.Similarity:
index.destroy()
def testPersistency(self):
if self.cls == similarities.WmdSimilarity and not PYEMD_EXT:
return
fname = get_tmpfile('gensim_similarities.tst.pkl')
index = self.factoryMethod()
index.save(fname)
index2 = self.cls.load(fname)
if self.cls == similarities.Similarity:
# for Similarity, only do a basic check
self.assertTrue(len(index.shards) == len(index2.shards))
index.destroy()
else:
if isinstance(index, similarities.SparseMatrixSimilarity):
# hack SparseMatrixSim indexes so they're easy to compare
index.index = index.index.todense()
index2.index = index2.index.todense()
self.assertTrue(numpy.allclose(index.index, index2.index))
self.assertEqual(index.num_best, index2.num_best)
def testPersistencyCompressed(self):
if self.cls == similarities.WmdSimilarity and not PYEMD_EXT:
return
fname = get_tmpfile('gensim_similarities.tst.pkl.gz')
index = self.factoryMethod()
index.save(fname)
index2 = self.cls.load(fname)
if self.cls == similarities.Similarity:
# for Similarity, only do a basic check
self.assertTrue(len(index.shards) == len(index2.shards))
index.destroy()
else:
if isinstance(index, similarities.SparseMatrixSimilarity):
# hack SparseMatrixSim indexes so they're easy to compare
index.index = index.index.todense()
index2.index = index2.index.todense()
self.assertTrue(numpy.allclose(index.index, index2.index))
self.assertEqual(index.num_best, index2.num_best)
def testLarge(self):
if self.cls == similarities.WmdSimilarity and not PYEMD_EXT:
return
fname = get_tmpfile('gensim_similarities.tst.pkl')
index = self.factoryMethod()
# store all arrays separately
index.save(fname, sep_limit=0)
index2 = self.cls.load(fname)
if self.cls == similarities.Similarity:
# for Similarity, only do a basic check
self.assertTrue(len(index.shards) == len(index2.shards))
index.destroy()
else:
if isinstance(index, similarities.SparseMatrixSimilarity):
# hack SparseMatrixSim indexes so they're easy to compare
index.index = index.index.todense()
index2.index = index2.index.todense()
self.assertTrue(numpy.allclose(index.index, index2.index))
self.assertEqual(index.num_best, index2.num_best)
def testLargeCompressed(self):
if self.cls == similarities.WmdSimilarity and not PYEMD_EXT:
return
fname = get_tmpfile('gensim_similarities.tst.pkl.gz')
index = self.factoryMethod()
# store all arrays separately
index.save(fname, sep_limit=0)
index2 = self.cls.load(fname, mmap=None)
if self.cls == similarities.Similarity:
# for Similarity, only do a basic check
self.assertTrue(len(index.shards) == len(index2.shards))
index.destroy()
else:
if isinstance(index, similarities.SparseMatrixSimilarity):
# hack SparseMatrixSim indexes so they're easy to compare
index.index = index.index.todense()
index2.index = index2.index.todense()
self.assertTrue(numpy.allclose(index.index, index2.index))
self.assertEqual(index.num_best, index2.num_best)
def testMmap(self):
if self.cls == similarities.WmdSimilarity and not PYEMD_EXT:
return
fname = get_tmpfile('gensim_similarities.tst.pkl')
index = self.factoryMethod()
# store all arrays separately
index.save(fname, sep_limit=0)
# same thing, but use mmap to load arrays
index2 = self.cls.load(fname, mmap='r')
if self.cls == similarities.Similarity:
# for Similarity, only do a basic check
self.assertTrue(len(index.shards) == len(index2.shards))
index.destroy()
else:
if isinstance(index, similarities.SparseMatrixSimilarity):
# hack SparseMatrixSim indexes so they're easy to compare
index.index = index.index.todense()
index2.index = index2.index.todense()
self.assertTrue(numpy.allclose(index.index, index2.index))
self.assertEqual(index.num_best, index2.num_best)
def testMmapCompressed(self):
if self.cls == similarities.WmdSimilarity and not PYEMD_EXT:
return
fname = get_tmpfile('gensim_similarities.tst.pkl.gz')
index = self.factoryMethod()
# store all arrays separately
index.save(fname, sep_limit=0)
# same thing, but use mmap to load arrays
self.assertRaises(IOError, self.cls.load, fname, mmap='r')
class TestMatrixSimilarity(unittest.TestCase, _TestSimilarityABC):
def setUp(self):
self.cls = similarities.MatrixSimilarity
class TestWmdSimilarity(unittest.TestCase, _TestSimilarityABC):
def setUp(self):
self.cls = similarities.WmdSimilarity
self.w2v_model = Word2Vec(texts, min_count=1)
def factoryMethod(self):
# Override factoryMethod.
return self.cls(texts, self.w2v_model)
def testFull(self, num_best=None):
# Override testFull.
if not PYEMD_EXT:
return
index = self.cls(texts, self.w2v_model)
index.num_best = num_best
query = texts[0]
sims = index[query]
if num_best is not None:
# Sparse array.
for i, sim in sims:
# Note that similarities are bigger than zero, as they are the 1/ 1 + distances.
self.assertTrue(numpy.alltrue(sim > 0.0))
else:
self.assertTrue(sims[0] == 1.0) # Similarity of a document with itself is 0.0.
self.assertTrue(numpy.alltrue(sims[1:] > 0.0))
self.assertTrue(numpy.alltrue(sims[1:] < 1.0))
def testNonIncreasing(self):
''' Check that similarities are non-increasing when `num_best` is not
`None`.'''
# NOTE: this could be implemented for other similarities as well (i.e.
# in _TestSimilarityABC).
if not PYEMD_EXT:
return
index = self.cls(texts, self.w2v_model, num_best=3)
query = texts[0]
sims = index[query]
sims2 = numpy.asarray(sims)[:, 1] # Just the similarities themselves.
# The difference of adjacent elements should be negative.
cond = sum(numpy.diff(sims2) < 0) == len(sims2) - 1
self.assertTrue(cond)
def testChunking(self):
# Override testChunking.
if not PYEMD_EXT:
return
index = self.cls(texts, self.w2v_model)
query = texts[:3]
sims = index[query]
for i in range(3):
self.assertTrue(numpy.alltrue(sims[i, i] == 1.0)) # Similarity of a document with itself is 0.0.
# test the same thing but with num_best
index.num_best = 3
sims = index[query]
for sims_temp in sims:
for i, sim in sims_temp:
self.assertTrue(numpy.alltrue(sim > 0.0))
self.assertTrue(numpy.alltrue(sim <= 1.0))
def testIter(self):
# Override testIter.
if not PYEMD_EXT:
return
index = self.cls(texts, self.w2v_model)
for sims in index:
self.assertTrue(numpy.alltrue(sims >= 0.0))
self.assertTrue(numpy.alltrue(sims <= 1.0))
class TestSoftCosineSimilarity(unittest.TestCase, _TestSimilarityABC):
def setUp(self):
self.cls = similarities.SoftCosineSimilarity
self.tfidf = TfidfModel(dictionary=dictionary)
similarity_matrix = scipy.sparse.identity(12, format="lil")
similarity_matrix[dictionary.token2id["user"], dictionary.token2id["human"]] = 0.5
similarity_matrix[dictionary.token2id["human"], dictionary.token2id["user"]] = 0.5
self.similarity_matrix = similarity_matrix.tocsc()
def factoryMethod(self):
# Override factoryMethod.
return self.cls(corpus, self.similarity_matrix)
def testFull(self, num_best=None):
# Override testFull.
# Single query
index = self.cls(corpus, self.similarity_matrix, num_best=num_best)
query = dictionary.doc2bow(texts[0])
sims = index[query]
if num_best is not None:
# Sparse array.
for i, sim in sims:
self.assertTrue(numpy.alltrue(sim <= 1.0))
self.assertTrue(numpy.alltrue(sim >= 0.0))
else:
self.assertAlmostEqual(1.0, sims[0]) # Similarity of a document with itself is 1.0.
self.assertTrue(numpy.alltrue(sims[1:] >= 0.0))
self.assertTrue(numpy.alltrue(sims[1:] < 1.0))
expected = 2.1889350195476758
self.assertAlmostEqual(expected, numpy.sum(sims))
# Corpora
for query in (
corpus, # Basic text corpus.
self.tfidf[corpus]): # Transformed corpus without slicing support.
index = self.cls(query, self.similarity_matrix, num_best=num_best)
sims = index[query]
if num_best is not None:
# Sparse array.
for result in sims:
for i, sim in result:
self.assertTrue(numpy.alltrue(sim <= 1.0))
self.assertTrue(numpy.alltrue(sim >= 0.0))
else:
for i, result in enumerate(sims):
self.assertAlmostEqual(1.0, result[i]) # Similarity of a document with itself is 1.0.
self.assertTrue(numpy.alltrue(result[:i] >= 0.0))
self.assertTrue(numpy.alltrue(result[:i] < 1.0))
self.assertTrue(numpy.alltrue(result[i + 1:] >= 0.0))
self.assertTrue(numpy.alltrue(result[i + 1:] < 1.0))
def testNonIncreasing(self):
""" Check that similarities are non-increasing when `num_best` is not `None`."""
# NOTE: this could be implemented for other similarities as well (i.e. in _TestSimilarityABC).
index = self.cls(corpus, self.similarity_matrix, num_best=5)
query = dictionary.doc2bow(texts[0])
sims = index[query]
sims2 = numpy.asarray(sims)[:, 1] # Just the similarities themselves.
# The difference of adjacent elements should be negative.
cond = sum(numpy.diff(sims2) < 0) == len(sims2) - 1
self.assertTrue(cond)
def testChunking(self):
# Override testChunking.
index = self.cls(corpus, self.similarity_matrix)
query = [dictionary.doc2bow(document) for document in texts[:3]]
sims = index[query]
for i in range(3):
self.assertTrue(numpy.alltrue(sims[i, i] == 1.0)) # Similarity of a document with itself is 1.0.
# test the same thing but with num_best
index.num_best = 5
sims = index[query]
for i, chunk in enumerate(sims):
expected = i
self.assertAlmostEquals(expected, chunk[0][0], places=2)
expected = 1.0
self.assertAlmostEquals(expected, chunk[0][1], places=2)
def testIter(self):
# Override testIter.
index = self.cls(corpus, self.similarity_matrix)
for sims in index:
self.assertTrue(numpy.alltrue(sims >= 0.0))
self.assertTrue(numpy.alltrue(sims <= 1.0))
class TestSparseMatrixSimilarity(unittest.TestCase, _TestSimilarityABC):
def setUp(self):
self.cls = similarities.SparseMatrixSimilarity
def testMaintainSparsity(self):
"""Sparsity is correctly maintained when maintain_sparsity=True"""
num_features = len(dictionary)
index = self.cls(corpus, num_features=num_features)
dense_sims = index[corpus]
index = self.cls(corpus, num_features=num_features, maintain_sparsity=True)
sparse_sims = index[corpus]
self.assertFalse(scipy.sparse.issparse(dense_sims))
self.assertTrue(scipy.sparse.issparse(sparse_sims))
numpy.testing.assert_array_equal(dense_sims, sparse_sims.todense())
def testMaintainSparsityWithNumBest(self):
"""Tests that sparsity is correctly maintained when maintain_sparsity=True and num_best is not None"""
num_features = len(dictionary)
index = self.cls(corpus, num_features=num_features, maintain_sparsity=False, num_best=3)
dense_topn_sims = index[corpus]
index = self.cls(corpus, num_features=num_features, maintain_sparsity=True, num_best=3)
scipy_topn_sims = index[corpus]
self.assertFalse(scipy.sparse.issparse(dense_topn_sims))
self.assertTrue(scipy.sparse.issparse(scipy_topn_sims))
self.assertEqual(dense_topn_sims, [matutils.scipy2sparse(v) for v in scipy_topn_sims])
class TestSimilarity(unittest.TestCase, _TestSimilarityABC):
def setUp(self):
self.cls = similarities.Similarity
def factoryMethod(self):
# Override factoryMethod.
return self.cls(None, corpus, num_features=len(dictionary), shardsize=5)
def testSharding(self):
for num_best in [None, 0, 1, 9, 1000]:
for shardsize in [1, 2, 9, 1000]:
self.testFull(num_best=num_best, shardsize=shardsize)
def testReopen(self):
"""test re-opening partially full shards"""
index = similarities.Similarity(None, corpus[:5], num_features=len(dictionary), shardsize=9)
_ = index[corpus[0]] # noqa:F841 forces shard close
index.add_documents(corpus[5:])
query = corpus[0]
sims = index[query]
expected = [(0, 0.99999994), (2, 0.28867513), (3, 0.23570226), (1, 0.23570226)]
expected = matutils.sparse2full(expected, len(index))
self.assertTrue(numpy.allclose(expected, sims))
index.destroy()
def testMmapCompressed(self):
pass
# turns out this test doesn't exercise this because there are no arrays
# to be mmaped!
def testChunksize(self):
index = self.cls(None, corpus, num_features=len(dictionary), shardsize=5)
expected = [sim for sim in index]
index.chunksize = len(index) - 1
sims = [sim for sim in index]
self.assertTrue(numpy.allclose(expected, sims))
index.destroy()
class TestWord2VecAnnoyIndexer(unittest.TestCase):
def setUp(self):
try:
import annoy # noqa:F401
except ImportError:
raise unittest.SkipTest("Annoy library is not available")
from gensim.similarities.index import AnnoyIndexer
self.indexer = AnnoyIndexer
def testWord2Vec(self):
model = word2vec.Word2Vec(texts, min_count=1)
model.init_sims()
index = self.indexer(model, 10)
self.assertVectorIsSimilarToItself(model.wv, index)
self.assertApproxNeighborsMatchExact(model, model.wv, index)
self.assertIndexSaved(index)
self.assertLoadedIndexEqual(index, model)
def testFastText(self):
class LeeReader(object):
def __init__(self, fn):
self.fn = fn
def __iter__(self):
with smart_open(self.fn, 'r', encoding="latin_1") as infile:
for line in infile:
yield line.lower().strip().split()
model = FastText(LeeReader(datapath('lee.cor')))
model.init_sims()
index = self.indexer(model, 10)
self.assertVectorIsSimilarToItself(model.wv, index)
self.assertApproxNeighborsMatchExact(model, model.wv, index)
self.assertIndexSaved(index)
self.assertLoadedIndexEqual(index, model)
def testAnnoyIndexingOfKeyedVectors(self):
from gensim.similarities.index import AnnoyIndexer
keyVectors_file = datapath('lee_fasttext.vec')
model = KeyedVectors.load_word2vec_format(keyVectors_file)
index = AnnoyIndexer(model, 10)
self.assertEqual(index.num_trees, 10)
self.assertVectorIsSimilarToItself(model, index)
self.assertApproxNeighborsMatchExact(model, model, index)
def testLoadMissingRaisesError(self):
from gensim.similarities.index import AnnoyIndexer
test_index = AnnoyIndexer()
self.assertRaises(IOError, test_index.load, fname='test-index')
def assertVectorIsSimilarToItself(self, wv, index):
vector = wv.syn0norm[0]
label = wv.index2word[0]
approx_neighbors = index.most_similar(vector, 1)
word, similarity = approx_neighbors[0]
self.assertEqual(word, label)
self.assertAlmostEqual(similarity, 1.0, places=2)
def assertApproxNeighborsMatchExact(self, model, wv, index):
vector = wv.syn0norm[0]
approx_neighbors = model.most_similar([vector], topn=5, indexer=index)
exact_neighbors = model.most_similar(positive=[vector], topn=5)
approx_words = [neighbor[0] for neighbor in approx_neighbors]
exact_words = [neighbor[0] for neighbor in exact_neighbors]
self.assertEqual(approx_words, exact_words)
def assertIndexSaved(self, index):
fname = get_tmpfile('gensim_similarities.tst.pkl')
index.save(fname)
self.assertTrue(os.path.exists(fname))
self.assertTrue(os.path.exists(fname + '.d'))
def assertLoadedIndexEqual(self, index, model):
from gensim.similarities.index import AnnoyIndexer
fname = get_tmpfile('gensim_similarities.tst.pkl')
index.save(fname)
index2 = AnnoyIndexer()
index2.load(fname)
index2.model = model
self.assertEqual(index.index.f, index2.index.f)
self.assertEqual(index.labels, index2.labels)
self.assertEqual(index.num_trees, index2.num_trees)
class TestDoc2VecAnnoyIndexer(unittest.TestCase):
def setUp(self):
try:
import annoy # noqa:F401
except ImportError:
raise unittest.SkipTest("Annoy library is not available")
from gensim.similarities.index import AnnoyIndexer
self.model = doc2vec.Doc2Vec(sentences, min_count=1)
self.model.init_sims()
self.index = AnnoyIndexer(self.model, 300)
self.vector = self.model.docvecs.doctag_syn0norm[0]
def testDocumentIsSimilarToItself(self):
approx_neighbors = self.index.most_similar(self.vector, 1)
doc, similarity = approx_neighbors[0]
self.assertEqual(doc, 0)
self.assertAlmostEqual(similarity, 1.0, places=2)
def testApproxNeighborsMatchExact(self):
approx_neighbors = self.model.docvecs.most_similar([self.vector], topn=5, indexer=self.index)
exact_neighbors = self.model.docvecs.most_similar(
positive=[self.vector], topn=5)
approx_words = [neighbor[0] for neighbor in approx_neighbors]
exact_words = [neighbor[0] for neighbor in exact_neighbors]
self.assertEqual(approx_words, exact_words)
def testSave(self):
fname = get_tmpfile('gensim_similarities.tst.pkl')
self.index.save(fname)
self.assertTrue(os.path.exists(fname))
self.assertTrue(os.path.exists(fname + '.d'))
def testLoadNotExist(self):
from gensim.similarities.index import AnnoyIndexer
self.test_index = AnnoyIndexer()
self.assertRaises(IOError, self.test_index.load, fname='test-index')
def testSaveLoad(self):
from gensim.similarities.index import AnnoyIndexer
fname = get_tmpfile('gensim_similarities.tst.pkl')
self.index.save(fname)
self.index2 = AnnoyIndexer()
self.index2.load(fname)
self.index2.model = self.model
self.assertEqual(self.index.index.f, self.index2.index.f)
self.assertEqual(self.index.labels, self.index2.labels)
self.assertEqual(self.index.num_trees, self.index2.num_trees)
if __name__ == '__main__':
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG)
unittest.main()