#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2011 Radim Rehurek # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ Automated tests for similarity algorithms (the similarities package). """ import logging import unittest import os import numpy import scipy from smart_open import smart_open from gensim.models import word2vec from gensim.models import doc2vec from gensim.models import KeyedVectors from gensim.models import TfidfModel from gensim import matutils, similarities from gensim.models import Word2Vec, FastText from gensim.test.utils import (datapath, get_tmpfile, common_texts as texts, common_dictionary as dictionary, common_corpus as corpus) try: from pyemd import emd # noqa:F401 PYEMD_EXT = True except ImportError: PYEMD_EXT = False sentences = [doc2vec.TaggedDocument(words, [i]) for i, words in enumerate(texts)] class _TestSimilarityABC(object): """ Base class for SparseMatrixSimilarity and MatrixSimilarity unit tests. """ def factoryMethod(self): """Creates a SimilarityABC instance.""" return self.cls(corpus, num_features=len(dictionary)) def testFull(self, num_best=None, shardsize=100): if self.cls == similarities.Similarity: index = self.cls(None, corpus, num_features=len(dictionary), shardsize=shardsize) else: index = self.cls(corpus, num_features=len(dictionary)) if isinstance(index, similarities.MatrixSimilarity): expected = numpy.array([ [0.57735026, 0.57735026, 0.57735026, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.40824831, 0.0, 0.40824831, 0.40824831, 0.40824831, 0.40824831, 0.40824831, 0.0, 0.0, 0.0, 0.0], [0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.5, 0.0, 0.0, 0.0], [0.0, 0.0, 0.40824831, 0.0, 0.0, 0.0, 0.81649661, 0.0, 0.40824831, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.57735026, 0.57735026, 0.0, 0.0, 0.57735026, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1., 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.70710677, 0.70710677, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.57735026, 0.57735026], [0.0, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.57735026], ], dtype=numpy.float32) # HACK: dictionary can be in different order, so compare in sorted order self.assertTrue(numpy.allclose(sorted(expected.flat), sorted(index.index.flat))) index.num_best = num_best query = corpus[0] sims = index[query] expected = [(0, 0.99999994), (2, 0.28867513), (3, 0.23570226), (1, 0.23570226)][: num_best] # convert sims to full numpy arrays, so we can use allclose() and ignore # ordering of items with the same similarity value expected = matutils.sparse2full(expected, len(index)) if num_best is not None: # when num_best is None, sims is already a numpy array sims = matutils.sparse2full(sims, len(index)) self.assertTrue(numpy.allclose(expected, sims)) if self.cls == similarities.Similarity: index.destroy() def testNumBest(self): if self.cls == similarities.WmdSimilarity and not PYEMD_EXT: return for num_best in [None, 0, 1, 9, 1000]: self.testFull(num_best=num_best) def test_full2sparse_clipped(self): vec = [0.8, 0.2, 0.0, 0.0, -0.1, -0.15] expected = [(0, 0.80000000000000004), (1, 0.20000000000000001), (5, -0.14999999999999999)] self.assertTrue(matutils.full2sparse_clipped(vec, topn=3), expected) def test_scipy2scipy_clipped(self): # Test for scipy vector/row vec = [0.8, 0.2, 0.0, 0.0, -0.1, -0.15] expected = [(0, 0.80000000000000004), (1, 0.20000000000000001), (5, -0.14999999999999999)] vec_scipy = scipy.sparse.csr_matrix(vec) vec_scipy_clipped = matutils.scipy2scipy_clipped(vec_scipy, topn=3) self.assertTrue(scipy.sparse.issparse(vec_scipy_clipped)) self.assertTrue(matutils.scipy2sparse(vec_scipy_clipped), expected) # Test for scipy matrix vec = [0.8, 0.2, 0.0, 0.0, -0.1, -0.15] expected = [(0, 0.80000000000000004), (1, 0.20000000000000001), (5, -0.14999999999999999)] matrix_scipy = scipy.sparse.csr_matrix([vec] * 3) matrix_scipy_clipped = matutils.scipy2scipy_clipped(matrix_scipy, topn=3) self.assertTrue(scipy.sparse.issparse(matrix_scipy_clipped)) self.assertTrue([matutils.scipy2sparse(x) for x in matrix_scipy_clipped], [expected] * 3) def testEmptyQuery(self): index = self.factoryMethod() query = [] try: sims = index[query] self.assertTrue(sims is not None) except IndexError: self.assertTrue(False) def testChunking(self): if self.cls == similarities.Similarity: index = self.cls(None, corpus, num_features=len(dictionary), shardsize=5) else: index = self.cls(corpus, num_features=len(dictionary)) query = corpus[:3] sims = index[query] expected = numpy.array([ [0.99999994, 0.23570226, 0.28867513, 0.23570226, 0.0, 0.0, 0.0, 0.0, 0.0], [0.23570226, 1.0, 0.40824831, 0.33333334, 0.70710677, 0.0, 0.0, 0.0, 0.23570226], [0.28867513, 0.40824831, 1.0, 0.61237246, 0.28867513, 0.0, 0.0, 0.0, 0.0] ], dtype=numpy.float32) self.assertTrue(numpy.allclose(expected, sims)) # test the same thing but with num_best index.num_best = 3 sims = index[query] expected = [ [(0, 0.99999994), (2, 0.28867513), (1, 0.23570226)], [(1, 1.0), (4, 0.70710677), (2, 0.40824831)], [(2, 1.0), (3, 0.61237246), (1, 0.40824831)] ] self.assertTrue(numpy.allclose(expected, sims)) if self.cls == similarities.Similarity: index.destroy() def testIter(self): if self.cls == similarities.Similarity: index = self.cls(None, corpus, num_features=len(dictionary), shardsize=5) else: index = self.cls(corpus, num_features=len(dictionary)) sims = [sim for sim in index] expected = numpy.array([ [0.99999994, 0.23570226, 0.28867513, 0.23570226, 0.0, 0.0, 0.0, 0.0, 0.0], [0.23570226, 1.0, 0.40824831, 0.33333334, 0.70710677, 0.0, 0.0, 0.0, 0.23570226], [0.28867513, 0.40824831, 1.0, 0.61237246, 0.28867513, 0.0, 0.0, 0.0, 0.0], [0.23570226, 0.33333334, 0.61237246, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.70710677, 0.28867513, 0.0, 0.99999994, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.70710677, 0.57735026, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.70710677, 0.99999994, 0.81649655, 0.40824828], [0.0, 0.0, 0.0, 0.0, 0.0, 0.57735026, 0.81649655, 0.99999994, 0.66666663], [0.0, 0.23570226, 0.0, 0.0, 0.0, 0.0, 0.40824828, 0.66666663, 0.99999994] ], dtype=numpy.float32) self.assertTrue(numpy.allclose(expected, sims)) if self.cls == similarities.Similarity: index.destroy() def testPersistency(self): if self.cls == similarities.WmdSimilarity and not PYEMD_EXT: return fname = get_tmpfile('gensim_similarities.tst.pkl') index = self.factoryMethod() index.save(fname) index2 = self.cls.load(fname) if self.cls == similarities.Similarity: # for Similarity, only do a basic check self.assertTrue(len(index.shards) == len(index2.shards)) index.destroy() else: if isinstance(index, similarities.SparseMatrixSimilarity): # hack SparseMatrixSim indexes so they're easy to compare index.index = index.index.todense() index2.index = index2.index.todense() self.assertTrue(numpy.allclose(index.index, index2.index)) self.assertEqual(index.num_best, index2.num_best) def testPersistencyCompressed(self): if self.cls == similarities.WmdSimilarity and not PYEMD_EXT: return fname = get_tmpfile('gensim_similarities.tst.pkl.gz') index = self.factoryMethod() index.save(fname) index2 = self.cls.load(fname) if self.cls == similarities.Similarity: # for Similarity, only do a basic check self.assertTrue(len(index.shards) == len(index2.shards)) index.destroy() else: if isinstance(index, similarities.SparseMatrixSimilarity): # hack SparseMatrixSim indexes so they're easy to compare index.index = index.index.todense() index2.index = index2.index.todense() self.assertTrue(numpy.allclose(index.index, index2.index)) self.assertEqual(index.num_best, index2.num_best) def testLarge(self): if self.cls == similarities.WmdSimilarity and not PYEMD_EXT: return fname = get_tmpfile('gensim_similarities.tst.pkl') index = self.factoryMethod() # store all arrays separately index.save(fname, sep_limit=0) index2 = self.cls.load(fname) if self.cls == similarities.Similarity: # for Similarity, only do a basic check self.assertTrue(len(index.shards) == len(index2.shards)) index.destroy() else: if isinstance(index, similarities.SparseMatrixSimilarity): # hack SparseMatrixSim indexes so they're easy to compare index.index = index.index.todense() index2.index = index2.index.todense() self.assertTrue(numpy.allclose(index.index, index2.index)) self.assertEqual(index.num_best, index2.num_best) def testLargeCompressed(self): if self.cls == similarities.WmdSimilarity and not PYEMD_EXT: return fname = get_tmpfile('gensim_similarities.tst.pkl.gz') index = self.factoryMethod() # store all arrays separately index.save(fname, sep_limit=0) index2 = self.cls.load(fname, mmap=None) if self.cls == similarities.Similarity: # for Similarity, only do a basic check self.assertTrue(len(index.shards) == len(index2.shards)) index.destroy() else: if isinstance(index, similarities.SparseMatrixSimilarity): # hack SparseMatrixSim indexes so they're easy to compare index.index = index.index.todense() index2.index = index2.index.todense() self.assertTrue(numpy.allclose(index.index, index2.index)) self.assertEqual(index.num_best, index2.num_best) def testMmap(self): if self.cls == similarities.WmdSimilarity and not PYEMD_EXT: return fname = get_tmpfile('gensim_similarities.tst.pkl') index = self.factoryMethod() # store all arrays separately index.save(fname, sep_limit=0) # same thing, but use mmap to load arrays index2 = self.cls.load(fname, mmap='r') if self.cls == similarities.Similarity: # for Similarity, only do a basic check self.assertTrue(len(index.shards) == len(index2.shards)) index.destroy() else: if isinstance(index, similarities.SparseMatrixSimilarity): # hack SparseMatrixSim indexes so they're easy to compare index.index = index.index.todense() index2.index = index2.index.todense() self.assertTrue(numpy.allclose(index.index, index2.index)) self.assertEqual(index.num_best, index2.num_best) def testMmapCompressed(self): if self.cls == similarities.WmdSimilarity and not PYEMD_EXT: return fname = get_tmpfile('gensim_similarities.tst.pkl.gz') index = self.factoryMethod() # store all arrays separately index.save(fname, sep_limit=0) # same thing, but use mmap to load arrays self.assertRaises(IOError, self.cls.load, fname, mmap='r') class TestMatrixSimilarity(unittest.TestCase, _TestSimilarityABC): def setUp(self): self.cls = similarities.MatrixSimilarity class TestWmdSimilarity(unittest.TestCase, _TestSimilarityABC): def setUp(self): self.cls = similarities.WmdSimilarity self.w2v_model = Word2Vec(texts, min_count=1) def factoryMethod(self): # Override factoryMethod. return self.cls(texts, self.w2v_model) def testFull(self, num_best=None): # Override testFull. if not PYEMD_EXT: return index = self.cls(texts, self.w2v_model) index.num_best = num_best query = texts[0] sims = index[query] if num_best is not None: # Sparse array. for i, sim in sims: # Note that similarities are bigger than zero, as they are the 1/ 1 + distances. self.assertTrue(numpy.alltrue(sim > 0.0)) else: self.assertTrue(sims[0] == 1.0) # Similarity of a document with itself is 0.0. self.assertTrue(numpy.alltrue(sims[1:] > 0.0)) self.assertTrue(numpy.alltrue(sims[1:] < 1.0)) def testNonIncreasing(self): ''' Check that similarities are non-increasing when `num_best` is not `None`.''' # NOTE: this could be implemented for other similarities as well (i.e. # in _TestSimilarityABC). if not PYEMD_EXT: return index = self.cls(texts, self.w2v_model, num_best=3) query = texts[0] sims = index[query] sims2 = numpy.asarray(sims)[:, 1] # Just the similarities themselves. # The difference of adjacent elements should be negative. cond = sum(numpy.diff(sims2) < 0) == len(sims2) - 1 self.assertTrue(cond) def testChunking(self): # Override testChunking. if not PYEMD_EXT: return index = self.cls(texts, self.w2v_model) query = texts[:3] sims = index[query] for i in range(3): self.assertTrue(numpy.alltrue(sims[i, i] == 1.0)) # Similarity of a document with itself is 0.0. # test the same thing but with num_best index.num_best = 3 sims = index[query] for sims_temp in sims: for i, sim in sims_temp: self.assertTrue(numpy.alltrue(sim > 0.0)) self.assertTrue(numpy.alltrue(sim <= 1.0)) def testIter(self): # Override testIter. if not PYEMD_EXT: return index = self.cls(texts, self.w2v_model) for sims in index: self.assertTrue(numpy.alltrue(sims >= 0.0)) self.assertTrue(numpy.alltrue(sims <= 1.0)) class TestSoftCosineSimilarity(unittest.TestCase, _TestSimilarityABC): def setUp(self): self.cls = similarities.SoftCosineSimilarity self.tfidf = TfidfModel(dictionary=dictionary) similarity_matrix = scipy.sparse.identity(12, format="lil") similarity_matrix[dictionary.token2id["user"], dictionary.token2id["human"]] = 0.5 similarity_matrix[dictionary.token2id["human"], dictionary.token2id["user"]] = 0.5 self.similarity_matrix = similarity_matrix.tocsc() def factoryMethod(self): # Override factoryMethod. return self.cls(corpus, self.similarity_matrix) def testFull(self, num_best=None): # Override testFull. # Single query index = self.cls(corpus, self.similarity_matrix, num_best=num_best) query = dictionary.doc2bow(texts[0]) sims = index[query] if num_best is not None: # Sparse array. for i, sim in sims: self.assertTrue(numpy.alltrue(sim <= 1.0)) self.assertTrue(numpy.alltrue(sim >= 0.0)) else: self.assertAlmostEqual(1.0, sims[0]) # Similarity of a document with itself is 1.0. self.assertTrue(numpy.alltrue(sims[1:] >= 0.0)) self.assertTrue(numpy.alltrue(sims[1:] < 1.0)) expected = 2.1889350195476758 self.assertAlmostEqual(expected, numpy.sum(sims)) # Corpora for query in ( corpus, # Basic text corpus. self.tfidf[corpus]): # Transformed corpus without slicing support. index = self.cls(query, self.similarity_matrix, num_best=num_best) sims = index[query] if num_best is not None: # Sparse array. for result in sims: for i, sim in result: self.assertTrue(numpy.alltrue(sim <= 1.0)) self.assertTrue(numpy.alltrue(sim >= 0.0)) else: for i, result in enumerate(sims): self.assertAlmostEqual(1.0, result[i]) # Similarity of a document with itself is 1.0. self.assertTrue(numpy.alltrue(result[:i] >= 0.0)) self.assertTrue(numpy.alltrue(result[:i] < 1.0)) self.assertTrue(numpy.alltrue(result[i + 1:] >= 0.0)) self.assertTrue(numpy.alltrue(result[i + 1:] < 1.0)) def testNonIncreasing(self): """ Check that similarities are non-increasing when `num_best` is not `None`.""" # NOTE: this could be implemented for other similarities as well (i.e. in _TestSimilarityABC). index = self.cls(corpus, self.similarity_matrix, num_best=5) query = dictionary.doc2bow(texts[0]) sims = index[query] sims2 = numpy.asarray(sims)[:, 1] # Just the similarities themselves. # The difference of adjacent elements should be negative. cond = sum(numpy.diff(sims2) < 0) == len(sims2) - 1 self.assertTrue(cond) def testChunking(self): # Override testChunking. index = self.cls(corpus, self.similarity_matrix) query = [dictionary.doc2bow(document) for document in texts[:3]] sims = index[query] for i in range(3): self.assertTrue(numpy.alltrue(sims[i, i] == 1.0)) # Similarity of a document with itself is 1.0. # test the same thing but with num_best index.num_best = 5 sims = index[query] for i, chunk in enumerate(sims): expected = i self.assertAlmostEquals(expected, chunk[0][0], places=2) expected = 1.0 self.assertAlmostEquals(expected, chunk[0][1], places=2) def testIter(self): # Override testIter. index = self.cls(corpus, self.similarity_matrix) for sims in index: self.assertTrue(numpy.alltrue(sims >= 0.0)) self.assertTrue(numpy.alltrue(sims <= 1.0)) class TestSparseMatrixSimilarity(unittest.TestCase, _TestSimilarityABC): def setUp(self): self.cls = similarities.SparseMatrixSimilarity def testMaintainSparsity(self): """Sparsity is correctly maintained when maintain_sparsity=True""" num_features = len(dictionary) index = self.cls(corpus, num_features=num_features) dense_sims = index[corpus] index = self.cls(corpus, num_features=num_features, maintain_sparsity=True) sparse_sims = index[corpus] self.assertFalse(scipy.sparse.issparse(dense_sims)) self.assertTrue(scipy.sparse.issparse(sparse_sims)) numpy.testing.assert_array_equal(dense_sims, sparse_sims.todense()) def testMaintainSparsityWithNumBest(self): """Tests that sparsity is correctly maintained when maintain_sparsity=True and num_best is not None""" num_features = len(dictionary) index = self.cls(corpus, num_features=num_features, maintain_sparsity=False, num_best=3) dense_topn_sims = index[corpus] index = self.cls(corpus, num_features=num_features, maintain_sparsity=True, num_best=3) scipy_topn_sims = index[corpus] self.assertFalse(scipy.sparse.issparse(dense_topn_sims)) self.assertTrue(scipy.sparse.issparse(scipy_topn_sims)) self.assertEqual(dense_topn_sims, [matutils.scipy2sparse(v) for v in scipy_topn_sims]) class TestSimilarity(unittest.TestCase, _TestSimilarityABC): def setUp(self): self.cls = similarities.Similarity def factoryMethod(self): # Override factoryMethod. return self.cls(None, corpus, num_features=len(dictionary), shardsize=5) def testSharding(self): for num_best in [None, 0, 1, 9, 1000]: for shardsize in [1, 2, 9, 1000]: self.testFull(num_best=num_best, shardsize=shardsize) def testReopen(self): """test re-opening partially full shards""" index = similarities.Similarity(None, corpus[:5], num_features=len(dictionary), shardsize=9) _ = index[corpus[0]] # noqa:F841 forces shard close index.add_documents(corpus[5:]) query = corpus[0] sims = index[query] expected = [(0, 0.99999994), (2, 0.28867513), (3, 0.23570226), (1, 0.23570226)] expected = matutils.sparse2full(expected, len(index)) self.assertTrue(numpy.allclose(expected, sims)) index.destroy() def testMmapCompressed(self): pass # turns out this test doesn't exercise this because there are no arrays # to be mmaped! def testChunksize(self): index = self.cls(None, corpus, num_features=len(dictionary), shardsize=5) expected = [sim for sim in index] index.chunksize = len(index) - 1 sims = [sim for sim in index] self.assertTrue(numpy.allclose(expected, sims)) index.destroy() class TestWord2VecAnnoyIndexer(unittest.TestCase): def setUp(self): try: import annoy # noqa:F401 except ImportError: raise unittest.SkipTest("Annoy library is not available") from gensim.similarities.index import AnnoyIndexer self.indexer = AnnoyIndexer def testWord2Vec(self): model = word2vec.Word2Vec(texts, min_count=1) model.init_sims() index = self.indexer(model, 10) self.assertVectorIsSimilarToItself(model.wv, index) self.assertApproxNeighborsMatchExact(model, model.wv, index) self.assertIndexSaved(index) self.assertLoadedIndexEqual(index, model) def testFastText(self): class LeeReader(object): def __init__(self, fn): self.fn = fn def __iter__(self): with smart_open(self.fn, 'r', encoding="latin_1") as infile: for line in infile: yield line.lower().strip().split() model = FastText(LeeReader(datapath('lee.cor'))) model.init_sims() index = self.indexer(model, 10) self.assertVectorIsSimilarToItself(model.wv, index) self.assertApproxNeighborsMatchExact(model, model.wv, index) self.assertIndexSaved(index) self.assertLoadedIndexEqual(index, model) def testAnnoyIndexingOfKeyedVectors(self): from gensim.similarities.index import AnnoyIndexer keyVectors_file = datapath('lee_fasttext.vec') model = KeyedVectors.load_word2vec_format(keyVectors_file) index = AnnoyIndexer(model, 10) self.assertEqual(index.num_trees, 10) self.assertVectorIsSimilarToItself(model, index) self.assertApproxNeighborsMatchExact(model, model, index) def testLoadMissingRaisesError(self): from gensim.similarities.index import AnnoyIndexer test_index = AnnoyIndexer() self.assertRaises(IOError, test_index.load, fname='test-index') def assertVectorIsSimilarToItself(self, wv, index): vector = wv.syn0norm[0] label = wv.index2word[0] approx_neighbors = index.most_similar(vector, 1) word, similarity = approx_neighbors[0] self.assertEqual(word, label) self.assertAlmostEqual(similarity, 1.0, places=2) def assertApproxNeighborsMatchExact(self, model, wv, index): vector = wv.syn0norm[0] approx_neighbors = model.most_similar([vector], topn=5, indexer=index) exact_neighbors = model.most_similar(positive=[vector], topn=5) approx_words = [neighbor[0] for neighbor in approx_neighbors] exact_words = [neighbor[0] for neighbor in exact_neighbors] self.assertEqual(approx_words, exact_words) def assertIndexSaved(self, index): fname = get_tmpfile('gensim_similarities.tst.pkl') index.save(fname) self.assertTrue(os.path.exists(fname)) self.assertTrue(os.path.exists(fname + '.d')) def assertLoadedIndexEqual(self, index, model): from gensim.similarities.index import AnnoyIndexer fname = get_tmpfile('gensim_similarities.tst.pkl') index.save(fname) index2 = AnnoyIndexer() index2.load(fname) index2.model = model self.assertEqual(index.index.f, index2.index.f) self.assertEqual(index.labels, index2.labels) self.assertEqual(index.num_trees, index2.num_trees) class TestDoc2VecAnnoyIndexer(unittest.TestCase): def setUp(self): try: import annoy # noqa:F401 except ImportError: raise unittest.SkipTest("Annoy library is not available") from gensim.similarities.index import AnnoyIndexer self.model = doc2vec.Doc2Vec(sentences, min_count=1) self.model.init_sims() self.index = AnnoyIndexer(self.model, 300) self.vector = self.model.docvecs.doctag_syn0norm[0] def testDocumentIsSimilarToItself(self): approx_neighbors = self.index.most_similar(self.vector, 1) doc, similarity = approx_neighbors[0] self.assertEqual(doc, 0) self.assertAlmostEqual(similarity, 1.0, places=2) def testApproxNeighborsMatchExact(self): approx_neighbors = self.model.docvecs.most_similar([self.vector], topn=5, indexer=self.index) exact_neighbors = self.model.docvecs.most_similar( positive=[self.vector], topn=5) approx_words = [neighbor[0] for neighbor in approx_neighbors] exact_words = [neighbor[0] for neighbor in exact_neighbors] self.assertEqual(approx_words, exact_words) def testSave(self): fname = get_tmpfile('gensim_similarities.tst.pkl') self.index.save(fname) self.assertTrue(os.path.exists(fname)) self.assertTrue(os.path.exists(fname + '.d')) def testLoadNotExist(self): from gensim.similarities.index import AnnoyIndexer self.test_index = AnnoyIndexer() self.assertRaises(IOError, self.test_index.load, fname='test-index') def testSaveLoad(self): from gensim.similarities.index import AnnoyIndexer fname = get_tmpfile('gensim_similarities.tst.pkl') self.index.save(fname) self.index2 = AnnoyIndexer() self.index2.load(fname) self.index2.model = self.model self.assertEqual(self.index.index.f, self.index2.index.f) self.assertEqual(self.index.labels, self.index2.labels) self.assertEqual(self.index.num_trees, self.index2.num_trees) if __name__ == '__main__': logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG) unittest.main()