laywerrobot/lib/python3.6/site-packages/gensim/models/wrappers/fasttext.py
2020-08-27 21:55:39 +02:00

38 lines
1.3 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Author: Jayant Jain <jayantjain1992@gmail.com>
# Copyright (C) 2017 Radim Rehurek <me@radimrehurek.com>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
"""
Warnings
--------
.. deprecated:: 3.2.0
Use :mod:`gensim.models.fasttext` instead.
Python wrapper around word representation learning from FastText, a library for efficient learning
of word representations and sentence classification [1].
This module allows training a word embedding from a training corpus with the additional ability
to obtain word vectors for out-of-vocabulary words, using the fastText C implementation.
The wrapped model can NOT be updated with new documents for online training -- use gensim's
`Word2Vec` for that.
Example:
>>> from gensim.models.wrappers import FastText
>>> model = FastText.train('/Users/kofola/fastText/fasttext', corpus_file='text8')
>>> print model['forests'] # prints vector for given out-of-vocabulary word
.. [1] https://github.com/facebookresearch/fastText#enriching-word-vectors-with-subword-information
"""
from gensim.models.deprecated.fasttext_wrapper import FastText, FastTextKeyedVectors # noqa:F401
from gensim.models.deprecated.fasttext_wrapper import ft_hash, compute_ngrams # noqa:F401