#!/usr/bin/env python # -*- coding: utf-8 -*- # # Author: Jayant Jain # Copyright (C) 2017 Radim Rehurek # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ Warnings -------- .. deprecated:: 3.2.0 Use :mod:`gensim.models.fasttext` instead. Python wrapper around word representation learning from FastText, a library for efficient learning of word representations and sentence classification [1]. This module allows training a word embedding from a training corpus with the additional ability to obtain word vectors for out-of-vocabulary words, using the fastText C implementation. The wrapped model can NOT be updated with new documents for online training -- use gensim's `Word2Vec` for that. Example: >>> from gensim.models.wrappers import FastText >>> model = FastText.train('/Users/kofola/fastText/fasttext', corpus_file='text8') >>> print model['forests'] # prints vector for given out-of-vocabulary word .. [1] https://github.com/facebookresearch/fastText#enriching-word-vectors-with-subword-information """ from gensim.models.deprecated.fasttext_wrapper import FastText, FastTextKeyedVectors # noqa:F401 from gensim.models.deprecated.fasttext_wrapper import ft_hash, compute_ngrams # noqa:F401