134 lines
4.9 KiB
Python
134 lines
4.9 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
|
||
|
"""Adadelta for TensorFlow."""
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from tensorflow.python.framework import ops
|
||
|
from tensorflow.python.ops import math_ops
|
||
|
from tensorflow.python.training import optimizer
|
||
|
from tensorflow.python.training import training_ops
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
|
||
|
@tf_export("train.AdadeltaOptimizer")
|
||
|
class AdadeltaOptimizer(optimizer.Optimizer):
|
||
|
"""Optimizer that implements the Adadelta algorithm.
|
||
|
|
||
|
See [M. D. Zeiler](http://arxiv.org/abs/1212.5701)
|
||
|
([pdf](http://arxiv.org/pdf/1212.5701v1.pdf))
|
||
|
"""
|
||
|
|
||
|
def __init__(self, learning_rate=0.001, rho=0.95, epsilon=1e-8,
|
||
|
use_locking=False, name="Adadelta"):
|
||
|
"""Construct a new Adadelta optimizer.
|
||
|
|
||
|
Args:
|
||
|
learning_rate: A `Tensor` or a floating point value. The learning rate.
|
||
|
To match the exact form in the original paper use 1.0.
|
||
|
rho: A `Tensor` or a floating point value. The decay rate.
|
||
|
epsilon: A `Tensor` or a floating point value. A constant epsilon used
|
||
|
to better conditioning the grad update.
|
||
|
use_locking: If `True` use locks for update operations.
|
||
|
name: Optional name prefix for the operations created when applying
|
||
|
gradients. Defaults to "Adadelta".
|
||
|
|
||
|
@compatibility(eager)
|
||
|
When eager execution is enabled, `learning_rate`, `rho`, and `epsilon` can
|
||
|
each be a callable that takes no arguments and returns the actual value to
|
||
|
use. This can be useful for changing these values across different
|
||
|
invocations of optimizer functions.
|
||
|
@end_compatibility
|
||
|
"""
|
||
|
super(AdadeltaOptimizer, self).__init__(use_locking, name)
|
||
|
self._lr = learning_rate
|
||
|
self._rho = rho
|
||
|
self._epsilon = epsilon
|
||
|
|
||
|
# Tensor versions of the constructor arguments, created in _prepare().
|
||
|
self._lr_t = None
|
||
|
self._rho_t = None
|
||
|
self._epsilon_t = None
|
||
|
|
||
|
def _create_slots(self, var_list):
|
||
|
for v in var_list:
|
||
|
self._zeros_slot(v, "accum", self._name)
|
||
|
self._zeros_slot(v, "accum_update", self._name)
|
||
|
|
||
|
def _prepare(self):
|
||
|
lr = self._call_if_callable(self._lr)
|
||
|
rho = self._call_if_callable(self._rho)
|
||
|
epsilon = self._call_if_callable(self._epsilon)
|
||
|
|
||
|
self._lr_t = ops.convert_to_tensor(lr, name="lr")
|
||
|
self._rho_t = ops.convert_to_tensor(rho, name="rho")
|
||
|
self._epsilon_t = ops.convert_to_tensor(epsilon, name="epsilon")
|
||
|
|
||
|
def _apply_dense(self, grad, var):
|
||
|
accum = self.get_slot(var, "accum")
|
||
|
accum_update = self.get_slot(var, "accum_update")
|
||
|
return training_ops.apply_adadelta(
|
||
|
var,
|
||
|
accum,
|
||
|
accum_update,
|
||
|
math_ops.cast(self._lr_t, var.dtype.base_dtype),
|
||
|
math_ops.cast(self._rho_t, var.dtype.base_dtype),
|
||
|
math_ops.cast(self._epsilon_t, var.dtype.base_dtype),
|
||
|
grad,
|
||
|
use_locking=self._use_locking)
|
||
|
|
||
|
def _resource_apply_dense(self, grad, var):
|
||
|
accum = self.get_slot(var, "accum")
|
||
|
accum_update = self.get_slot(var, "accum_update")
|
||
|
return training_ops.resource_apply_adadelta(
|
||
|
var.handle,
|
||
|
accum.handle,
|
||
|
accum_update.handle,
|
||
|
math_ops.cast(self._lr_t, grad.dtype.base_dtype),
|
||
|
math_ops.cast(self._rho_t, grad.dtype.base_dtype),
|
||
|
math_ops.cast(self._epsilon_t, grad.dtype.base_dtype),
|
||
|
grad,
|
||
|
use_locking=self._use_locking)
|
||
|
|
||
|
def _apply_sparse(self, grad, var):
|
||
|
accum = self.get_slot(var, "accum")
|
||
|
accum_update = self.get_slot(var, "accum_update")
|
||
|
return training_ops.sparse_apply_adadelta(
|
||
|
var,
|
||
|
accum,
|
||
|
accum_update,
|
||
|
math_ops.cast(self._lr_t, var.dtype.base_dtype),
|
||
|
math_ops.cast(self._rho_t, var.dtype.base_dtype),
|
||
|
math_ops.cast(self._epsilon_t, var.dtype.base_dtype),
|
||
|
grad.values,
|
||
|
grad.indices,
|
||
|
use_locking=self._use_locking)
|
||
|
|
||
|
def _resource_apply_sparse(self, grad, var, indices):
|
||
|
accum = self.get_slot(var, "accum")
|
||
|
accum_update = self.get_slot(var, "accum_update")
|
||
|
return training_ops.resource_sparse_apply_adadelta(
|
||
|
var.handle,
|
||
|
accum.handle,
|
||
|
accum_update.handle,
|
||
|
math_ops.cast(self._lr_t, grad.dtype),
|
||
|
math_ops.cast(self._rho_t, grad.dtype),
|
||
|
math_ops.cast(self._epsilon_t, grad.dtype),
|
||
|
grad,
|
||
|
indices,
|
||
|
use_locking=self._use_locking)
|