# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Adadelta for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import math_ops from tensorflow.python.training import optimizer from tensorflow.python.training import training_ops from tensorflow.python.util.tf_export import tf_export @tf_export("train.AdadeltaOptimizer") class AdadeltaOptimizer(optimizer.Optimizer): """Optimizer that implements the Adadelta algorithm. See [M. D. Zeiler](http://arxiv.org/abs/1212.5701) ([pdf](http://arxiv.org/pdf/1212.5701v1.pdf)) """ def __init__(self, learning_rate=0.001, rho=0.95, epsilon=1e-8, use_locking=False, name="Adadelta"): """Construct a new Adadelta optimizer. Args: learning_rate: A `Tensor` or a floating point value. The learning rate. To match the exact form in the original paper use 1.0. rho: A `Tensor` or a floating point value. The decay rate. epsilon: A `Tensor` or a floating point value. A constant epsilon used to better conditioning the grad update. use_locking: If `True` use locks for update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "Adadelta". @compatibility(eager) When eager execution is enabled, `learning_rate`, `rho`, and `epsilon` can each be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions. @end_compatibility """ super(AdadeltaOptimizer, self).__init__(use_locking, name) self._lr = learning_rate self._rho = rho self._epsilon = epsilon # Tensor versions of the constructor arguments, created in _prepare(). self._lr_t = None self._rho_t = None self._epsilon_t = None def _create_slots(self, var_list): for v in var_list: self._zeros_slot(v, "accum", self._name) self._zeros_slot(v, "accum_update", self._name) def _prepare(self): lr = self._call_if_callable(self._lr) rho = self._call_if_callable(self._rho) epsilon = self._call_if_callable(self._epsilon) self._lr_t = ops.convert_to_tensor(lr, name="lr") self._rho_t = ops.convert_to_tensor(rho, name="rho") self._epsilon_t = ops.convert_to_tensor(epsilon, name="epsilon") def _apply_dense(self, grad, var): accum = self.get_slot(var, "accum") accum_update = self.get_slot(var, "accum_update") return training_ops.apply_adadelta( var, accum, accum_update, math_ops.cast(self._lr_t, var.dtype.base_dtype), math_ops.cast(self._rho_t, var.dtype.base_dtype), math_ops.cast(self._epsilon_t, var.dtype.base_dtype), grad, use_locking=self._use_locking) def _resource_apply_dense(self, grad, var): accum = self.get_slot(var, "accum") accum_update = self.get_slot(var, "accum_update") return training_ops.resource_apply_adadelta( var.handle, accum.handle, accum_update.handle, math_ops.cast(self._lr_t, grad.dtype.base_dtype), math_ops.cast(self._rho_t, grad.dtype.base_dtype), math_ops.cast(self._epsilon_t, grad.dtype.base_dtype), grad, use_locking=self._use_locking) def _apply_sparse(self, grad, var): accum = self.get_slot(var, "accum") accum_update = self.get_slot(var, "accum_update") return training_ops.sparse_apply_adadelta( var, accum, accum_update, math_ops.cast(self._lr_t, var.dtype.base_dtype), math_ops.cast(self._rho_t, var.dtype.base_dtype), math_ops.cast(self._epsilon_t, var.dtype.base_dtype), grad.values, grad.indices, use_locking=self._use_locking) def _resource_apply_sparse(self, grad, var, indices): accum = self.get_slot(var, "accum") accum_update = self.get_slot(var, "accum_update") return training_ops.resource_sparse_apply_adadelta( var.handle, accum.handle, accum_update.handle, math_ops.cast(self._lr_t, grad.dtype), math_ops.cast(self._rho_t, grad.dtype), math_ops.cast(self._epsilon_t, grad.dtype), grad, indices, use_locking=self._use_locking)