laywerrobot/lib/python3.6/site-packages/tensorflow/python/keras/layers/wrappers.py

665 lines
24 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=protected-access
"""Wrapper layers: layers that augment the functionality of another layer.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
from tensorflow.python.framework import tensor_shape
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.engine.base_layer import InputSpec
from tensorflow.python.keras.engine.base_layer import Layer
from tensorflow.python.keras.layers.recurrent import _standardize_args
from tensorflow.python.keras.utils import generic_utils
from tensorflow.python.keras.utils import tf_utils
from tensorflow.python.ops import array_ops
from tensorflow.python.util.tf_export import tf_export
@tf_export('keras.layers.Wrapper')
class Wrapper(Layer):
"""Abstract wrapper base class.
Wrappers take another layer and augment it in various ways.
Do not use this class as a layer, it is only an abstract base class.
Two usable wrappers are the `TimeDistributed` and `Bidirectional` wrappers.
Arguments:
layer: The layer to be wrapped.
"""
def __init__(self, layer, **kwargs):
assert isinstance(layer, Layer)
self.layer = layer
self._track_checkpointable(layer, name='layer')
# Tracks mapping of Wrapper inputs to inner layer inputs. Useful when
# the inner layer has update ops that depend on its inputs (as opposed
# to the inputs to the Wrapper layer).
self._input_map = {}
super(Wrapper, self).__init__(**kwargs)
def build(self, input_shape=None):
self.built = True
@property
def activity_regularizer(self):
if hasattr(self.layer, 'activity_regularizer'):
return self.layer.activity_regularizer
else:
return None
@property
def trainable(self):
return self.layer.trainable
@trainable.setter
def trainable(self, value):
self.layer.trainable = value
@property
def trainable_weights(self):
return self.layer.trainable_weights
@property
def non_trainable_weights(self):
return self.layer.non_trainable_weights
@property
def updates(self):
return self.layer.updates + self._updates
@property
def losses(self):
return self.layer.losses + self._losses
def get_weights(self):
return self.layer.get_weights()
def set_weights(self, weights):
self.layer.set_weights(weights)
def get_config(self):
config = {
'layer': {
'class_name': self.layer.__class__.__name__,
'config': self.layer.get_config()
}
}
base_config = super(Wrapper, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@classmethod
def from_config(cls, config, custom_objects=None):
from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top
layer = deserialize_layer(
config.pop('layer'), custom_objects=custom_objects)
return cls(layer, **config)
@tf_export('keras.layers.TimeDistributed')
class TimeDistributed(Wrapper):
"""This wrapper allows to apply a layer to every temporal slice of an input.
The input should be at least 3D, and the dimension of index one
will be considered to be the temporal dimension.
Consider a batch of 32 samples,
where each sample is a sequence of 10 vectors of 16 dimensions.
The batch input shape of the layer is then `(32, 10, 16)`,
and the `input_shape`, not including the samples dimension, is `(10, 16)`.
You can then use `TimeDistributed` to apply a `Dense` layer
to each of the 10 timesteps, independently:
```python
# as the first layer in a model
model = Sequential()
model.add(TimeDistributed(Dense(8), input_shape=(10, 16)))
# now model.output_shape == (None, 10, 8)
```
The output will then have shape `(32, 10, 8)`.
In subsequent layers, there is no need for the `input_shape`:
```python
model.add(TimeDistributed(Dense(32)))
# now model.output_shape == (None, 10, 32)
```
The output will then have shape `(32, 10, 32)`.
`TimeDistributed` can be used with arbitrary layers, not just `Dense`,
for instance with a `Conv2D` layer:
```python
model = Sequential()
model.add(TimeDistributed(Conv2D(64, (3, 3)),
input_shape=(10, 299, 299, 3)))
```
Arguments:
layer: a layer instance.
Raises:
ValueError: If not initialized with a `Layer` instance.
"""
def __init__(self, layer, **kwargs):
if not isinstance(layer, Layer):
raise ValueError(
'Please initialize `TimeDistributed` layer with a '
'`Layer` instance. You passed: {input}'.format(input=layer))
super(TimeDistributed, self).__init__(layer, **kwargs)
self.supports_masking = True
def _get_shape_tuple(self, init_tuple, tensor, start_idx, int_shape=None):
"""Finds non-specific dimensions in the static shapes.
The static shapes are replaced with the corresponding dynamic shapes of the
tensor.
Arguments:
init_tuple: a tuple, the first part of the output shape
tensor: the tensor from which to get the (static and dynamic) shapes
as the last part of the output shape
start_idx: int, which indicate the first dimension to take from
the static shape of the tensor
int_shape: an alternative static shape to take as the last part
of the output shape
Returns:
The new int_shape with the first part from init_tuple
and the last part from either `int_shape` (if provided)
or `tensor.shape`, where every `None` is replaced by
the corresponding dimension from `tf.shape(tensor)`.
"""
# replace all None in int_shape by K.shape
if int_shape is None:
int_shape = K.int_shape(tensor)[start_idx:]
if not any(not s for s in int_shape):
return init_tuple + tuple(int_shape)
shape = K.shape(tensor)
int_shape = list(int_shape)
for i, s in enumerate(int_shape):
if not s:
int_shape[i] = shape[start_idx + i]
return init_tuple + tuple(int_shape)
def build(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
assert len(input_shape) >= 3
self.input_spec = InputSpec(shape=input_shape)
child_input_shape = [input_shape[0]] + input_shape[2:]
if not self.layer.built:
# The base layer class calls a conversion function on the input shape to
# convert it to a TensorShape. The conversion function requires a
# tuple which is why we cast the shape.
self.layer.build(tuple(child_input_shape))
self.layer.built = True
super(TimeDistributed, self).build()
self.built = True
def compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
child_input_shape = tensor_shape.TensorShape([input_shape[0]] +
input_shape[2:])
child_output_shape = self.layer.compute_output_shape(
child_input_shape).as_list()
timesteps = input_shape[1]
return tensor_shape.TensorShape([child_output_shape[0], timesteps] +
child_output_shape[1:])
def call(self, inputs, training=None, mask=None):
kwargs = {}
if generic_utils.has_arg(self.layer.call, 'training'):
kwargs['training'] = training
uses_learning_phase = False # pylint: disable=redefined-outer-name
input_shape = K.int_shape(inputs)
if input_shape[0]:
# batch size matters, use rnn-based implementation
def step(x, _):
global uses_learning_phase # pylint: disable=global-variable-undefined
output = self.layer.call(x, **kwargs)
if hasattr(output, '_uses_learning_phase'):
uses_learning_phase = (output._uses_learning_phase or
uses_learning_phase)
return output, []
_, outputs, _ = K.rnn(
step,
inputs,
initial_states=[],
input_length=input_shape[1],
unroll=False)
y = outputs
else:
# No batch size specified, therefore the layer will be able
# to process batches of any size.
# We can go with reshape-based implementation for performance.
input_length = input_shape[1]
if not input_length:
input_length = array_ops.shape(inputs)[1]
inner_input_shape = self._get_shape_tuple((-1,), inputs, 2)
# Shape: (num_samples * timesteps, ...). And track the
# transformation in self._input_map.
input_uid = generic_utils.object_list_uid(inputs)
inputs = array_ops.reshape(inputs, inner_input_shape)
self._input_map[input_uid] = inputs
# (num_samples * timesteps, ...)
if generic_utils.has_arg(self.layer.call, 'mask') and mask is not None:
inner_mask_shape = self._get_shape_tuple((-1,), mask, 2)
kwargs['mask'] = K.reshape(mask, inner_mask_shape)
y = self.layer.call(inputs, **kwargs)
if hasattr(y, '_uses_learning_phase'):
uses_learning_phase = y._uses_learning_phase
# Shape: (num_samples, timesteps, ...)
output_shape = self.compute_output_shape(input_shape).as_list()
output_shape = self._get_shape_tuple(
(-1, input_length), y, 1, output_shape[2:])
y = array_ops.reshape(y, output_shape)
# Apply activity regularizer if any:
if (hasattr(self.layer, 'activity_regularizer') and
self.layer.activity_regularizer is not None):
regularization_loss = self.layer.activity_regularizer(y)
self.add_loss(regularization_loss, inputs)
if uses_learning_phase:
y._uses_learning_phase = True
return y
def compute_mask(self, inputs, mask=None):
"""Computes an output mask tensor for Embedding layer.
This is based on the inputs, mask, and the inner layer.
If batch size is specified:
Simply return the input `mask`. (An rnn-based implementation with
more than one rnn inputs is required but not supported in tf.keras yet.)
Otherwise we call `compute_mask` of the inner layer at each time step.
If the output mask at each time step is not `None`:
(E.g., inner layer is Masking or RNN)
Concatenate all of them and return the concatenation.
If the output mask at each time step is `None` and the input mask is not
`None`:(E.g., inner layer is Dense)
Reduce the input_mask to 2 dimensions and return it.
Otherwise (both the output mask and the input mask are `None`):
(E.g., `mask` is not used at all)
Return `None`.
Arguments:
inputs: Tensor with shape [batch size, timesteps, ...] indicating the
input to TimeDistributed. If static shape information is available for
"batch size", `mask` is returned unmodified.
mask: Either None (indicating no masking) or a Tensor indicating the
input mask for TimeDistributed. The shape can be static or dynamic.
Returns:
Either None (no masking), or a [batch size, timesteps, ...] Tensor with
an output mask for the TimeDistributed layer with the shape beyond the
second dimension being the value of the input mask shape(if the computed
output mask is none), an output mask with the shape beyond the first
dimension being the value of the mask shape(if mask is not None) or
output mask with the shape beyond the first dimension being the
value of the computed output shape.
"""
# cases need to call the layer.compute_mask when input_mask is None:
# Masking layer and Embedding layer with mask_zero
input_shape = K.int_shape(inputs)
if input_shape[0]:
# batch size matters, we currently do not handle mask explicitly
return mask
inner_mask = mask
if inner_mask is not None:
inner_mask_shape = self._get_shape_tuple((-1,), mask, 2)
inner_mask = K.reshape(inner_mask, inner_mask_shape)
input_uid = generic_utils.object_list_uid(inputs)
inner_inputs = self._input_map[input_uid]
output_mask = self.layer.compute_mask(inner_inputs, inner_mask)
if output_mask is None:
if mask is None:
return None
# input_mask is not None, and output_mask is None:
# we should return a not-None mask
output_mask = mask
for _ in range(2, len(K.int_shape(mask))):
output_mask = K.any(output_mask, axis=-1)
else:
# output_mask is not None. We need to reshape it
input_length = input_shape[1]
if not input_length:
input_length = K.shape(inputs)[1]
output_mask_int_shape = K.int_shape(output_mask)
if output_mask_int_shape is None:
# if the output_mask does not have a static shape,
# its shape must be the same as mask's
if mask is not None:
output_mask_int_shape = K.int_shape(mask)
else:
output_mask_int_shape = K.compute_output_shape(input_shape)[:-1]
output_mask_shape = self._get_shape_tuple(
(-1, input_length), output_mask, 1, output_mask_int_shape[1:])
output_mask = K.reshape(output_mask, output_mask_shape)
return output_mask
@tf_export('keras.layers.Bidirectional')
class Bidirectional(Wrapper):
"""Bidirectional wrapper for RNNs.
Arguments:
layer: `Recurrent` instance.
merge_mode: Mode by which outputs of the
forward and backward RNNs will be combined.
One of {'sum', 'mul', 'concat', 'ave', None}.
If None, the outputs will not be combined,
they will be returned as a list.
Raises:
ValueError: If not initialized with a `Layer` instance or
In case of invalid `merge_mode` argument.
Examples:
```python
model = Sequential()
model.add(Bidirectional(LSTM(10, return_sequences=True), input_shape=(5,
10)))
model.add(Bidirectional(LSTM(10)))
model.add(Dense(5))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
```
"""
def __init__(self, layer, merge_mode='concat', weights=None, **kwargs):
if not isinstance(layer, Layer):
raise ValueError(
'Please initialize `Bidirectional` layer with a '
'`Layer` instance. You passed: {input}'.format(input=layer))
if merge_mode not in ['sum', 'mul', 'ave', 'concat', None]:
raise ValueError('Invalid merge mode. '
'Merge mode should be one of '
'{"sum", "mul", "ave", "concat", None}')
self.forward_layer = copy.copy(layer)
config = layer.get_config()
config['go_backwards'] = not config['go_backwards']
self.backward_layer = layer.__class__.from_config(config)
self.forward_layer._name = 'forward_' + self.forward_layer.name
self.backward_layer._name = 'backward_' + self.backward_layer.name
self.merge_mode = merge_mode
if weights:
nw = len(weights)
self.forward_layer.initial_weights = weights[:nw // 2]
self.backward_layer.initial_weights = weights[nw // 2:]
self.stateful = layer.stateful
self.return_sequences = layer.return_sequences
self.return_state = layer.return_state
self.supports_masking = True
self._trainable = True
self._num_constants = None
super(Bidirectional, self).__init__(layer, **kwargs)
self.input_spec = layer.input_spec
@property
def trainable(self):
return self._trainable
@trainable.setter
def trainable(self, value):
self._trainable = value
self.forward_layer.trainable = value
self.backward_layer.trainable = value
def get_weights(self):
return self.forward_layer.get_weights() + self.backward_layer.get_weights()
def set_weights(self, weights):
nw = len(weights)
self.forward_layer.set_weights(weights[:nw // 2])
self.backward_layer.set_weights(weights[nw // 2:])
@tf_utils.shape_type_conversion
def compute_output_shape(self, input_shape):
output_shape = tuple(self.forward_layer.compute_output_shape(
input_shape).as_list())
if self.return_state:
state_shape = output_shape[1:]
output_shape = output_shape[0]
if self.merge_mode == 'concat':
output_shape = list(output_shape)
output_shape[-1] *= 2
output_shape = tuple(output_shape)
elif self.merge_mode is None:
output_shape = [output_shape, copy.copy(output_shape)]
if self.return_state:
if self.merge_mode is None:
return output_shape + state_shape + copy.copy(state_shape)
return [output_shape] + state_shape + copy.copy(state_shape)
return output_shape
def __call__(self, inputs, initial_state=None, constants=None, **kwargs):
"""`Bidirectional.__call__` implements the same API as the wrapped `RNN`."""
inputs, initial_state, constants = _standardize_args(
inputs, initial_state, constants, self._num_constants)
if isinstance(inputs, list):
if len(inputs) > 1:
initial_state = inputs[1:]
inputs = inputs[0]
if initial_state is None and constants is None:
return super(Bidirectional, self).__call__(inputs, **kwargs)
# Applies the same workaround as in `RNN.__call__`
additional_inputs = []
additional_specs = []
if initial_state is not None:
# Check if `initial_state` can be splitted into half
num_states = len(initial_state)
if num_states % 2 > 0:
raise ValueError(
'When passing `initial_state` to a Bidirectional RNN, '
'the state should be a list containing the states of '
'the underlying RNNs. '
'Found: ' + str(initial_state))
kwargs['initial_state'] = initial_state
additional_inputs += initial_state
state_specs = [InputSpec(shape=K.int_shape(state))
for state in initial_state]
self.forward_layer.state_spec = state_specs[:num_states // 2]
self.backward_layer.state_spec = state_specs[num_states // 2:]
additional_specs += state_specs
if constants is not None:
kwargs['constants'] = constants
additional_inputs += constants
constants_spec = [InputSpec(shape=K.int_shape(constant))
for constant in constants]
self.forward_layer.constants_spec = constants_spec
self.backward_layer.constants_spec = constants_spec
additional_specs += constants_spec
self._num_constants = len(constants)
self.forward_layer._num_constants = self._num_constants
self.backward_layer._num_constants = self._num_constants
is_keras_tensor = K.is_keras_tensor(additional_inputs[0])
for tensor in additional_inputs:
if K.is_keras_tensor(tensor) != is_keras_tensor:
raise ValueError('The initial state of a Bidirectional'
' layer cannot be specified with a mix of'
' Keras tensors and non-Keras tensors'
' (a "Keras tensor" is a tensor that was'
' returned by a Keras layer, or by `Input`)')
if is_keras_tensor:
# Compute the full input spec, including state
full_input = [inputs] + additional_inputs
full_input_spec = self.input_spec + additional_specs
# Perform the call with temporarily replaced input_spec
original_input_spec = self.input_spec
self.input_spec = full_input_spec
output = super(Bidirectional, self).__call__(full_input, **kwargs)
self.input_spec = original_input_spec
return output
else:
return super(Bidirectional, self).__call__(inputs, **kwargs)
def call(self, inputs,
training=None,
mask=None,
initial_state=None,
constants=None):
"""`Bidirectional.call` implements the same API as the wrapped `RNN`."""
kwargs = {}
if generic_utils.has_arg(self.layer.call, 'training'):
kwargs['training'] = training
if generic_utils.has_arg(self.layer.call, 'mask'):
kwargs['mask'] = mask
if generic_utils.has_arg(self.layer.call, 'constants'):
kwargs['constants'] = constants
if initial_state is not None and generic_utils.has_arg(
self.layer.call, 'initial_state'):
forward_state = initial_state[:len(initial_state) // 2]
backward_state = initial_state[len(initial_state) // 2:]
y = self.forward_layer.call(inputs, initial_state=forward_state, **kwargs)
y_rev = self.backward_layer.call(
inputs, initial_state=backward_state, **kwargs)
else:
y = self.forward_layer.call(inputs, **kwargs)
y_rev = self.backward_layer.call(inputs, **kwargs)
if self.return_state:
states = y[1:] + y_rev[1:]
y = y[0]
y_rev = y_rev[0]
if self.return_sequences:
y_rev = K.reverse(y_rev, 1)
if self.merge_mode == 'concat':
output = K.concatenate([y, y_rev])
elif self.merge_mode == 'sum':
output = y + y_rev
elif self.merge_mode == 'ave':
output = (y + y_rev) / 2
elif self.merge_mode == 'mul':
output = y * y_rev
elif self.merge_mode is None:
output = [y, y_rev]
# Properly set learning phase
if (getattr(y, '_uses_learning_phase', False) or
getattr(y_rev, '_uses_learning_phase', False)):
if self.merge_mode is None:
for out in output:
out._uses_learning_phase = True
else:
output._uses_learning_phase = True
if self.return_state:
if self.merge_mode is None:
return output + states
return [output] + states
return output
def reset_states(self):
self.forward_layer.reset_states()
self.backward_layer.reset_states()
def build(self, input_shape):
with K.name_scope(self.forward_layer.name):
self.forward_layer.build(input_shape)
with K.name_scope(self.backward_layer.name):
self.backward_layer.build(input_shape)
self.built = True
def compute_mask(self, inputs, mask):
if isinstance(mask, list):
mask = mask[0]
if self.return_sequences:
if not self.merge_mode:
output_mask = [mask, mask]
else:
output_mask = mask
else:
output_mask = [None, None] if not self.merge_mode else None
if self.return_state:
states = self.forward_layer.states
state_mask = [None for _ in states]
if isinstance(output_mask, list):
return output_mask + state_mask * 2
return [output_mask] + state_mask * 2
return output_mask
@property
def trainable_weights(self):
if hasattr(self.forward_layer, 'trainable_weights'):
return (self.forward_layer.trainable_weights +
self.backward_layer.trainable_weights)
return []
@property
def non_trainable_weights(self):
if hasattr(self.forward_layer, 'non_trainable_weights'):
return (self.forward_layer.non_trainable_weights +
self.backward_layer.non_trainable_weights)
return []
@property
def updates(self):
if hasattr(self.forward_layer, 'updates'):
return self.forward_layer.updates + self.backward_layer.updates
return []
@property
def losses(self):
if hasattr(self.forward_layer, 'losses'):
return self.forward_layer.losses + self.backward_layer.losses
return []
@property
def constraints(self):
constraints = {}
if hasattr(self.forward_layer, 'constraints'):
constraints.update(self.forward_layer.constraints)
constraints.update(self.backward_layer.constraints)
return constraints
def get_config(self):
config = {'merge_mode': self.merge_mode}
if self._num_constants is not None:
config['num_constants'] = self._num_constants
base_config = super(Bidirectional, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@classmethod
def from_config(cls, config, custom_objects=None):
num_constants = config.pop('num_constants', None)
layer = super(Bidirectional, cls).from_config(config,
custom_objects=custom_objects)
layer._num_constants = num_constants
return layer