# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=protected-access """Wrapper layers: layers that augment the functionality of another layer. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy from tensorflow.python.framework import tensor_shape from tensorflow.python.keras import backend as K from tensorflow.python.keras.engine.base_layer import InputSpec from tensorflow.python.keras.engine.base_layer import Layer from tensorflow.python.keras.layers.recurrent import _standardize_args from tensorflow.python.keras.utils import generic_utils from tensorflow.python.keras.utils import tf_utils from tensorflow.python.ops import array_ops from tensorflow.python.util.tf_export import tf_export @tf_export('keras.layers.Wrapper') class Wrapper(Layer): """Abstract wrapper base class. Wrappers take another layer and augment it in various ways. Do not use this class as a layer, it is only an abstract base class. Two usable wrappers are the `TimeDistributed` and `Bidirectional` wrappers. Arguments: layer: The layer to be wrapped. """ def __init__(self, layer, **kwargs): assert isinstance(layer, Layer) self.layer = layer self._track_checkpointable(layer, name='layer') # Tracks mapping of Wrapper inputs to inner layer inputs. Useful when # the inner layer has update ops that depend on its inputs (as opposed # to the inputs to the Wrapper layer). self._input_map = {} super(Wrapper, self).__init__(**kwargs) def build(self, input_shape=None): self.built = True @property def activity_regularizer(self): if hasattr(self.layer, 'activity_regularizer'): return self.layer.activity_regularizer else: return None @property def trainable(self): return self.layer.trainable @trainable.setter def trainable(self, value): self.layer.trainable = value @property def trainable_weights(self): return self.layer.trainable_weights @property def non_trainable_weights(self): return self.layer.non_trainable_weights @property def updates(self): return self.layer.updates + self._updates @property def losses(self): return self.layer.losses + self._losses def get_weights(self): return self.layer.get_weights() def set_weights(self, weights): self.layer.set_weights(weights) def get_config(self): config = { 'layer': { 'class_name': self.layer.__class__.__name__, 'config': self.layer.get_config() } } base_config = super(Wrapper, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top layer = deserialize_layer( config.pop('layer'), custom_objects=custom_objects) return cls(layer, **config) @tf_export('keras.layers.TimeDistributed') class TimeDistributed(Wrapper): """This wrapper allows to apply a layer to every temporal slice of an input. The input should be at least 3D, and the dimension of index one will be considered to be the temporal dimension. Consider a batch of 32 samples, where each sample is a sequence of 10 vectors of 16 dimensions. The batch input shape of the layer is then `(32, 10, 16)`, and the `input_shape`, not including the samples dimension, is `(10, 16)`. You can then use `TimeDistributed` to apply a `Dense` layer to each of the 10 timesteps, independently: ```python # as the first layer in a model model = Sequential() model.add(TimeDistributed(Dense(8), input_shape=(10, 16))) # now model.output_shape == (None, 10, 8) ``` The output will then have shape `(32, 10, 8)`. In subsequent layers, there is no need for the `input_shape`: ```python model.add(TimeDistributed(Dense(32))) # now model.output_shape == (None, 10, 32) ``` The output will then have shape `(32, 10, 32)`. `TimeDistributed` can be used with arbitrary layers, not just `Dense`, for instance with a `Conv2D` layer: ```python model = Sequential() model.add(TimeDistributed(Conv2D(64, (3, 3)), input_shape=(10, 299, 299, 3))) ``` Arguments: layer: a layer instance. Raises: ValueError: If not initialized with a `Layer` instance. """ def __init__(self, layer, **kwargs): if not isinstance(layer, Layer): raise ValueError( 'Please initialize `TimeDistributed` layer with a ' '`Layer` instance. You passed: {input}'.format(input=layer)) super(TimeDistributed, self).__init__(layer, **kwargs) self.supports_masking = True def _get_shape_tuple(self, init_tuple, tensor, start_idx, int_shape=None): """Finds non-specific dimensions in the static shapes. The static shapes are replaced with the corresponding dynamic shapes of the tensor. Arguments: init_tuple: a tuple, the first part of the output shape tensor: the tensor from which to get the (static and dynamic) shapes as the last part of the output shape start_idx: int, which indicate the first dimension to take from the static shape of the tensor int_shape: an alternative static shape to take as the last part of the output shape Returns: The new int_shape with the first part from init_tuple and the last part from either `int_shape` (if provided) or `tensor.shape`, where every `None` is replaced by the corresponding dimension from `tf.shape(tensor)`. """ # replace all None in int_shape by K.shape if int_shape is None: int_shape = K.int_shape(tensor)[start_idx:] if not any(not s for s in int_shape): return init_tuple + tuple(int_shape) shape = K.shape(tensor) int_shape = list(int_shape) for i, s in enumerate(int_shape): if not s: int_shape[i] = shape[start_idx + i] return init_tuple + tuple(int_shape) def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() assert len(input_shape) >= 3 self.input_spec = InputSpec(shape=input_shape) child_input_shape = [input_shape[0]] + input_shape[2:] if not self.layer.built: # The base layer class calls a conversion function on the input shape to # convert it to a TensorShape. The conversion function requires a # tuple which is why we cast the shape. self.layer.build(tuple(child_input_shape)) self.layer.built = True super(TimeDistributed, self).build() self.built = True def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() child_input_shape = tensor_shape.TensorShape([input_shape[0]] + input_shape[2:]) child_output_shape = self.layer.compute_output_shape( child_input_shape).as_list() timesteps = input_shape[1] return tensor_shape.TensorShape([child_output_shape[0], timesteps] + child_output_shape[1:]) def call(self, inputs, training=None, mask=None): kwargs = {} if generic_utils.has_arg(self.layer.call, 'training'): kwargs['training'] = training uses_learning_phase = False # pylint: disable=redefined-outer-name input_shape = K.int_shape(inputs) if input_shape[0]: # batch size matters, use rnn-based implementation def step(x, _): global uses_learning_phase # pylint: disable=global-variable-undefined output = self.layer.call(x, **kwargs) if hasattr(output, '_uses_learning_phase'): uses_learning_phase = (output._uses_learning_phase or uses_learning_phase) return output, [] _, outputs, _ = K.rnn( step, inputs, initial_states=[], input_length=input_shape[1], unroll=False) y = outputs else: # No batch size specified, therefore the layer will be able # to process batches of any size. # We can go with reshape-based implementation for performance. input_length = input_shape[1] if not input_length: input_length = array_ops.shape(inputs)[1] inner_input_shape = self._get_shape_tuple((-1,), inputs, 2) # Shape: (num_samples * timesteps, ...). And track the # transformation in self._input_map. input_uid = generic_utils.object_list_uid(inputs) inputs = array_ops.reshape(inputs, inner_input_shape) self._input_map[input_uid] = inputs # (num_samples * timesteps, ...) if generic_utils.has_arg(self.layer.call, 'mask') and mask is not None: inner_mask_shape = self._get_shape_tuple((-1,), mask, 2) kwargs['mask'] = K.reshape(mask, inner_mask_shape) y = self.layer.call(inputs, **kwargs) if hasattr(y, '_uses_learning_phase'): uses_learning_phase = y._uses_learning_phase # Shape: (num_samples, timesteps, ...) output_shape = self.compute_output_shape(input_shape).as_list() output_shape = self._get_shape_tuple( (-1, input_length), y, 1, output_shape[2:]) y = array_ops.reshape(y, output_shape) # Apply activity regularizer if any: if (hasattr(self.layer, 'activity_regularizer') and self.layer.activity_regularizer is not None): regularization_loss = self.layer.activity_regularizer(y) self.add_loss(regularization_loss, inputs) if uses_learning_phase: y._uses_learning_phase = True return y def compute_mask(self, inputs, mask=None): """Computes an output mask tensor for Embedding layer. This is based on the inputs, mask, and the inner layer. If batch size is specified: Simply return the input `mask`. (An rnn-based implementation with more than one rnn inputs is required but not supported in tf.keras yet.) Otherwise we call `compute_mask` of the inner layer at each time step. If the output mask at each time step is not `None`: (E.g., inner layer is Masking or RNN) Concatenate all of them and return the concatenation. If the output mask at each time step is `None` and the input mask is not `None`:(E.g., inner layer is Dense) Reduce the input_mask to 2 dimensions and return it. Otherwise (both the output mask and the input mask are `None`): (E.g., `mask` is not used at all) Return `None`. Arguments: inputs: Tensor with shape [batch size, timesteps, ...] indicating the input to TimeDistributed. If static shape information is available for "batch size", `mask` is returned unmodified. mask: Either None (indicating no masking) or a Tensor indicating the input mask for TimeDistributed. The shape can be static or dynamic. Returns: Either None (no masking), or a [batch size, timesteps, ...] Tensor with an output mask for the TimeDistributed layer with the shape beyond the second dimension being the value of the input mask shape(if the computed output mask is none), an output mask with the shape beyond the first dimension being the value of the mask shape(if mask is not None) or output mask with the shape beyond the first dimension being the value of the computed output shape. """ # cases need to call the layer.compute_mask when input_mask is None: # Masking layer and Embedding layer with mask_zero input_shape = K.int_shape(inputs) if input_shape[0]: # batch size matters, we currently do not handle mask explicitly return mask inner_mask = mask if inner_mask is not None: inner_mask_shape = self._get_shape_tuple((-1,), mask, 2) inner_mask = K.reshape(inner_mask, inner_mask_shape) input_uid = generic_utils.object_list_uid(inputs) inner_inputs = self._input_map[input_uid] output_mask = self.layer.compute_mask(inner_inputs, inner_mask) if output_mask is None: if mask is None: return None # input_mask is not None, and output_mask is None: # we should return a not-None mask output_mask = mask for _ in range(2, len(K.int_shape(mask))): output_mask = K.any(output_mask, axis=-1) else: # output_mask is not None. We need to reshape it input_length = input_shape[1] if not input_length: input_length = K.shape(inputs)[1] output_mask_int_shape = K.int_shape(output_mask) if output_mask_int_shape is None: # if the output_mask does not have a static shape, # its shape must be the same as mask's if mask is not None: output_mask_int_shape = K.int_shape(mask) else: output_mask_int_shape = K.compute_output_shape(input_shape)[:-1] output_mask_shape = self._get_shape_tuple( (-1, input_length), output_mask, 1, output_mask_int_shape[1:]) output_mask = K.reshape(output_mask, output_mask_shape) return output_mask @tf_export('keras.layers.Bidirectional') class Bidirectional(Wrapper): """Bidirectional wrapper for RNNs. Arguments: layer: `Recurrent` instance. merge_mode: Mode by which outputs of the forward and backward RNNs will be combined. One of {'sum', 'mul', 'concat', 'ave', None}. If None, the outputs will not be combined, they will be returned as a list. Raises: ValueError: If not initialized with a `Layer` instance or In case of invalid `merge_mode` argument. Examples: ```python model = Sequential() model.add(Bidirectional(LSTM(10, return_sequences=True), input_shape=(5, 10))) model.add(Bidirectional(LSTM(10))) model.add(Dense(5)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') ``` """ def __init__(self, layer, merge_mode='concat', weights=None, **kwargs): if not isinstance(layer, Layer): raise ValueError( 'Please initialize `Bidirectional` layer with a ' '`Layer` instance. You passed: {input}'.format(input=layer)) if merge_mode not in ['sum', 'mul', 'ave', 'concat', None]: raise ValueError('Invalid merge mode. ' 'Merge mode should be one of ' '{"sum", "mul", "ave", "concat", None}') self.forward_layer = copy.copy(layer) config = layer.get_config() config['go_backwards'] = not config['go_backwards'] self.backward_layer = layer.__class__.from_config(config) self.forward_layer._name = 'forward_' + self.forward_layer.name self.backward_layer._name = 'backward_' + self.backward_layer.name self.merge_mode = merge_mode if weights: nw = len(weights) self.forward_layer.initial_weights = weights[:nw // 2] self.backward_layer.initial_weights = weights[nw // 2:] self.stateful = layer.stateful self.return_sequences = layer.return_sequences self.return_state = layer.return_state self.supports_masking = True self._trainable = True self._num_constants = None super(Bidirectional, self).__init__(layer, **kwargs) self.input_spec = layer.input_spec @property def trainable(self): return self._trainable @trainable.setter def trainable(self, value): self._trainable = value self.forward_layer.trainable = value self.backward_layer.trainable = value def get_weights(self): return self.forward_layer.get_weights() + self.backward_layer.get_weights() def set_weights(self, weights): nw = len(weights) self.forward_layer.set_weights(weights[:nw // 2]) self.backward_layer.set_weights(weights[nw // 2:]) @tf_utils.shape_type_conversion def compute_output_shape(self, input_shape): output_shape = tuple(self.forward_layer.compute_output_shape( input_shape).as_list()) if self.return_state: state_shape = output_shape[1:] output_shape = output_shape[0] if self.merge_mode == 'concat': output_shape = list(output_shape) output_shape[-1] *= 2 output_shape = tuple(output_shape) elif self.merge_mode is None: output_shape = [output_shape, copy.copy(output_shape)] if self.return_state: if self.merge_mode is None: return output_shape + state_shape + copy.copy(state_shape) return [output_shape] + state_shape + copy.copy(state_shape) return output_shape def __call__(self, inputs, initial_state=None, constants=None, **kwargs): """`Bidirectional.__call__` implements the same API as the wrapped `RNN`.""" inputs, initial_state, constants = _standardize_args( inputs, initial_state, constants, self._num_constants) if isinstance(inputs, list): if len(inputs) > 1: initial_state = inputs[1:] inputs = inputs[0] if initial_state is None and constants is None: return super(Bidirectional, self).__call__(inputs, **kwargs) # Applies the same workaround as in `RNN.__call__` additional_inputs = [] additional_specs = [] if initial_state is not None: # Check if `initial_state` can be splitted into half num_states = len(initial_state) if num_states % 2 > 0: raise ValueError( 'When passing `initial_state` to a Bidirectional RNN, ' 'the state should be a list containing the states of ' 'the underlying RNNs. ' 'Found: ' + str(initial_state)) kwargs['initial_state'] = initial_state additional_inputs += initial_state state_specs = [InputSpec(shape=K.int_shape(state)) for state in initial_state] self.forward_layer.state_spec = state_specs[:num_states // 2] self.backward_layer.state_spec = state_specs[num_states // 2:] additional_specs += state_specs if constants is not None: kwargs['constants'] = constants additional_inputs += constants constants_spec = [InputSpec(shape=K.int_shape(constant)) for constant in constants] self.forward_layer.constants_spec = constants_spec self.backward_layer.constants_spec = constants_spec additional_specs += constants_spec self._num_constants = len(constants) self.forward_layer._num_constants = self._num_constants self.backward_layer._num_constants = self._num_constants is_keras_tensor = K.is_keras_tensor(additional_inputs[0]) for tensor in additional_inputs: if K.is_keras_tensor(tensor) != is_keras_tensor: raise ValueError('The initial state of a Bidirectional' ' layer cannot be specified with a mix of' ' Keras tensors and non-Keras tensors' ' (a "Keras tensor" is a tensor that was' ' returned by a Keras layer, or by `Input`)') if is_keras_tensor: # Compute the full input spec, including state full_input = [inputs] + additional_inputs full_input_spec = self.input_spec + additional_specs # Perform the call with temporarily replaced input_spec original_input_spec = self.input_spec self.input_spec = full_input_spec output = super(Bidirectional, self).__call__(full_input, **kwargs) self.input_spec = original_input_spec return output else: return super(Bidirectional, self).__call__(inputs, **kwargs) def call(self, inputs, training=None, mask=None, initial_state=None, constants=None): """`Bidirectional.call` implements the same API as the wrapped `RNN`.""" kwargs = {} if generic_utils.has_arg(self.layer.call, 'training'): kwargs['training'] = training if generic_utils.has_arg(self.layer.call, 'mask'): kwargs['mask'] = mask if generic_utils.has_arg(self.layer.call, 'constants'): kwargs['constants'] = constants if initial_state is not None and generic_utils.has_arg( self.layer.call, 'initial_state'): forward_state = initial_state[:len(initial_state) // 2] backward_state = initial_state[len(initial_state) // 2:] y = self.forward_layer.call(inputs, initial_state=forward_state, **kwargs) y_rev = self.backward_layer.call( inputs, initial_state=backward_state, **kwargs) else: y = self.forward_layer.call(inputs, **kwargs) y_rev = self.backward_layer.call(inputs, **kwargs) if self.return_state: states = y[1:] + y_rev[1:] y = y[0] y_rev = y_rev[0] if self.return_sequences: y_rev = K.reverse(y_rev, 1) if self.merge_mode == 'concat': output = K.concatenate([y, y_rev]) elif self.merge_mode == 'sum': output = y + y_rev elif self.merge_mode == 'ave': output = (y + y_rev) / 2 elif self.merge_mode == 'mul': output = y * y_rev elif self.merge_mode is None: output = [y, y_rev] # Properly set learning phase if (getattr(y, '_uses_learning_phase', False) or getattr(y_rev, '_uses_learning_phase', False)): if self.merge_mode is None: for out in output: out._uses_learning_phase = True else: output._uses_learning_phase = True if self.return_state: if self.merge_mode is None: return output + states return [output] + states return output def reset_states(self): self.forward_layer.reset_states() self.backward_layer.reset_states() def build(self, input_shape): with K.name_scope(self.forward_layer.name): self.forward_layer.build(input_shape) with K.name_scope(self.backward_layer.name): self.backward_layer.build(input_shape) self.built = True def compute_mask(self, inputs, mask): if isinstance(mask, list): mask = mask[0] if self.return_sequences: if not self.merge_mode: output_mask = [mask, mask] else: output_mask = mask else: output_mask = [None, None] if not self.merge_mode else None if self.return_state: states = self.forward_layer.states state_mask = [None for _ in states] if isinstance(output_mask, list): return output_mask + state_mask * 2 return [output_mask] + state_mask * 2 return output_mask @property def trainable_weights(self): if hasattr(self.forward_layer, 'trainable_weights'): return (self.forward_layer.trainable_weights + self.backward_layer.trainable_weights) return [] @property def non_trainable_weights(self): if hasattr(self.forward_layer, 'non_trainable_weights'): return (self.forward_layer.non_trainable_weights + self.backward_layer.non_trainable_weights) return [] @property def updates(self): if hasattr(self.forward_layer, 'updates'): return self.forward_layer.updates + self.backward_layer.updates return [] @property def losses(self): if hasattr(self.forward_layer, 'losses'): return self.forward_layer.losses + self.backward_layer.losses return [] @property def constraints(self): constraints = {} if hasattr(self.forward_layer, 'constraints'): constraints.update(self.forward_layer.constraints) constraints.update(self.backward_layer.constraints) return constraints def get_config(self): config = {'merge_mode': self.merge_mode} if self._num_constants is not None: config['num_constants'] = self._num_constants base_config = super(Bidirectional, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): num_constants = config.pop('num_constants', None) layer = super(Bidirectional, cls).from_config(config, custom_objects=custom_objects) layer._num_constants = num_constants return layer