304 lines
11 KiB
Python
304 lines
11 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
# pylint: disable=invalid-name
|
||
|
# pylint: disable=unused-import
|
||
|
"""ResNet50 model for Keras.
|
||
|
|
||
|
# Reference:
|
||
|
|
||
|
- [Deep Residual Learning for Image
|
||
|
Recognition](https://arxiv.org/abs/1512.03385)
|
||
|
|
||
|
Adapted from code contributed by BigMoyan.
|
||
|
"""
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import os
|
||
|
|
||
|
from tensorflow.python.keras import backend as K
|
||
|
from tensorflow.python.keras import layers
|
||
|
from tensorflow.python.keras.applications.imagenet_utils import _obtain_input_shape
|
||
|
from tensorflow.python.keras.applications.imagenet_utils import decode_predictions
|
||
|
from tensorflow.python.keras.applications.imagenet_utils import preprocess_input
|
||
|
from tensorflow.python.keras.layers import Activation
|
||
|
from tensorflow.python.keras.layers import AveragePooling2D
|
||
|
from tensorflow.python.keras.layers import BatchNormalization
|
||
|
from tensorflow.python.keras.layers import Conv2D
|
||
|
from tensorflow.python.keras.layers import Dense
|
||
|
from tensorflow.python.keras.layers import Flatten
|
||
|
from tensorflow.python.keras.layers import GlobalAveragePooling2D
|
||
|
from tensorflow.python.keras.layers import GlobalMaxPooling2D
|
||
|
from tensorflow.python.keras.layers import Input
|
||
|
from tensorflow.python.keras.layers import MaxPooling2D
|
||
|
from tensorflow.python.keras.layers import ZeroPadding2D
|
||
|
from tensorflow.python.keras.models import Model
|
||
|
from tensorflow.python.keras.utils import layer_utils
|
||
|
from tensorflow.python.keras.utils.data_utils import get_file
|
||
|
from tensorflow.python.platform import tf_logging as logging
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
|
||
|
WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5'
|
||
|
WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
|
||
|
|
||
|
|
||
|
def identity_block(input_tensor, kernel_size, filters, stage, block):
|
||
|
"""The identity block is the block that has no conv layer at shortcut.
|
||
|
|
||
|
Arguments:
|
||
|
input_tensor: input tensor
|
||
|
kernel_size: default 3, the kernel size of middle conv layer at main path
|
||
|
filters: list of integers, the filters of 3 conv layer at main path
|
||
|
stage: integer, current stage label, used for generating layer names
|
||
|
block: 'a','b'..., current block label, used for generating layer names
|
||
|
|
||
|
Returns:
|
||
|
Output tensor for the block.
|
||
|
"""
|
||
|
filters1, filters2, filters3 = filters
|
||
|
if K.image_data_format() == 'channels_last':
|
||
|
bn_axis = 3
|
||
|
else:
|
||
|
bn_axis = 1
|
||
|
conv_name_base = 'res' + str(stage) + block + '_branch'
|
||
|
bn_name_base = 'bn' + str(stage) + block + '_branch'
|
||
|
|
||
|
x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)
|
||
|
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
|
||
|
x = Activation('relu')(x)
|
||
|
|
||
|
x = Conv2D(
|
||
|
filters2, kernel_size, padding='same', name=conv_name_base + '2b')(
|
||
|
x)
|
||
|
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
|
||
|
x = Activation('relu')(x)
|
||
|
|
||
|
x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
|
||
|
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
|
||
|
|
||
|
x = layers.add([x, input_tensor])
|
||
|
x = Activation('relu')(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2,
|
||
|
2)):
|
||
|
"""A block that has a conv layer at shortcut.
|
||
|
|
||
|
Arguments:
|
||
|
input_tensor: input tensor
|
||
|
kernel_size: default 3, the kernel size of middle conv layer at main path
|
||
|
filters: list of integers, the filters of 3 conv layer at main path
|
||
|
stage: integer, current stage label, used for generating layer names
|
||
|
block: 'a','b'..., current block label, used for generating layer names
|
||
|
strides: Strides for the first conv layer in the block.
|
||
|
|
||
|
Returns:
|
||
|
Output tensor for the block.
|
||
|
|
||
|
Note that from stage 3,
|
||
|
the first conv layer at main path is with strides=(2, 2)
|
||
|
And the shortcut should have strides=(2, 2) as well
|
||
|
"""
|
||
|
filters1, filters2, filters3 = filters
|
||
|
if K.image_data_format() == 'channels_last':
|
||
|
bn_axis = 3
|
||
|
else:
|
||
|
bn_axis = 1
|
||
|
conv_name_base = 'res' + str(stage) + block + '_branch'
|
||
|
bn_name_base = 'bn' + str(stage) + block + '_branch'
|
||
|
|
||
|
x = Conv2D(
|
||
|
filters1, (1, 1), strides=strides, name=conv_name_base + '2a')(
|
||
|
input_tensor)
|
||
|
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
|
||
|
x = Activation('relu')(x)
|
||
|
|
||
|
x = Conv2D(
|
||
|
filters2, kernel_size, padding='same', name=conv_name_base + '2b')(
|
||
|
x)
|
||
|
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
|
||
|
x = Activation('relu')(x)
|
||
|
|
||
|
x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
|
||
|
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
|
||
|
|
||
|
shortcut = Conv2D(
|
||
|
filters3, (1, 1), strides=strides, name=conv_name_base + '1')(
|
||
|
input_tensor)
|
||
|
shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut)
|
||
|
|
||
|
x = layers.add([x, shortcut])
|
||
|
x = Activation('relu')(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
@tf_export('keras.applications.ResNet50',
|
||
|
'keras.applications.resnet50.ResNet50')
|
||
|
def ResNet50(include_top=True,
|
||
|
weights='imagenet',
|
||
|
input_tensor=None,
|
||
|
input_shape=None,
|
||
|
pooling=None,
|
||
|
classes=1000):
|
||
|
"""Instantiates the ResNet50 architecture.
|
||
|
|
||
|
Optionally loads weights pre-trained
|
||
|
on ImageNet. Note that when using TensorFlow,
|
||
|
for best performance you should set
|
||
|
`image_data_format='channels_last'` in your Keras config
|
||
|
at ~/.keras/keras.json.
|
||
|
|
||
|
The model and the weights are compatible with both
|
||
|
TensorFlow and Theano. The data format
|
||
|
convention used by the model is the one
|
||
|
specified in your Keras config file.
|
||
|
|
||
|
Arguments:
|
||
|
include_top: whether to include the fully-connected
|
||
|
layer at the top of the network.
|
||
|
weights: one of `None` (random initialization),
|
||
|
'imagenet' (pre-training on ImageNet),
|
||
|
or the path to the weights file to be loaded.
|
||
|
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
|
||
|
to use as image input for the model.
|
||
|
input_shape: optional shape tuple, only to be specified
|
||
|
if `include_top` is False (otherwise the input shape
|
||
|
has to be `(224, 224, 3)` (with `channels_last` data format)
|
||
|
or `(3, 224, 224)` (with `channels_first` data format).
|
||
|
It should have exactly 3 inputs channels,
|
||
|
and width and height should be no smaller than 197.
|
||
|
E.g. `(200, 200, 3)` would be one valid value.
|
||
|
pooling: Optional pooling mode for feature extraction
|
||
|
when `include_top` is `False`.
|
||
|
- `None` means that the output of the model will be
|
||
|
the 4D tensor output of the
|
||
|
last convolutional layer.
|
||
|
- `avg` means that global average pooling
|
||
|
will be applied to the output of the
|
||
|
last convolutional layer, and thus
|
||
|
the output of the model will be a 2D tensor.
|
||
|
- `max` means that global max pooling will
|
||
|
be applied.
|
||
|
classes: optional number of classes to classify images
|
||
|
into, only to be specified if `include_top` is True, and
|
||
|
if no `weights` argument is specified.
|
||
|
|
||
|
Returns:
|
||
|
A Keras model instance.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: in case of invalid argument for `weights`,
|
||
|
or invalid input shape.
|
||
|
"""
|
||
|
if not (weights in {'imagenet', None} or os.path.exists(weights)):
|
||
|
raise ValueError('The `weights` argument should be either '
|
||
|
'`None` (random initialization), `imagenet` '
|
||
|
'(pre-training on ImageNet), '
|
||
|
'or the path to the weights file to be loaded.')
|
||
|
|
||
|
if weights == 'imagenet' and include_top and classes != 1000:
|
||
|
raise ValueError('If using `weights` as imagenet with `include_top`'
|
||
|
' as true, `classes` should be 1000')
|
||
|
|
||
|
# Determine proper input shape
|
||
|
input_shape = _obtain_input_shape(
|
||
|
input_shape,
|
||
|
default_size=224,
|
||
|
min_size=197,
|
||
|
data_format=K.image_data_format(),
|
||
|
require_flatten=include_top,
|
||
|
weights=weights)
|
||
|
|
||
|
if input_tensor is None:
|
||
|
img_input = Input(shape=input_shape)
|
||
|
else:
|
||
|
if not K.is_keras_tensor(input_tensor):
|
||
|
img_input = Input(tensor=input_tensor, shape=input_shape)
|
||
|
else:
|
||
|
img_input = input_tensor
|
||
|
if K.image_data_format() == 'channels_last':
|
||
|
bn_axis = 3
|
||
|
else:
|
||
|
bn_axis = 1
|
||
|
|
||
|
x = Conv2D(
|
||
|
64, (7, 7), strides=(2, 2), padding='same', name='conv1')(img_input)
|
||
|
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
|
||
|
x = Activation('relu')(x)
|
||
|
x = MaxPooling2D((3, 3), strides=(2, 2))(x)
|
||
|
|
||
|
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
|
||
|
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
|
||
|
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
|
||
|
|
||
|
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
|
||
|
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
|
||
|
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
|
||
|
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
|
||
|
|
||
|
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
|
||
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
|
||
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
|
||
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
|
||
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
|
||
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
|
||
|
|
||
|
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
|
||
|
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
|
||
|
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
|
||
|
|
||
|
x = AveragePooling2D((7, 7), name='avg_pool')(x)
|
||
|
|
||
|
if include_top:
|
||
|
x = Flatten()(x)
|
||
|
x = Dense(classes, activation='softmax', name='fc1000')(x)
|
||
|
else:
|
||
|
if pooling == 'avg':
|
||
|
x = GlobalAveragePooling2D()(x)
|
||
|
elif pooling == 'max':
|
||
|
x = GlobalMaxPooling2D()(x)
|
||
|
|
||
|
# Ensure that the model takes into account
|
||
|
# any potential predecessors of `input_tensor`.
|
||
|
if input_tensor is not None:
|
||
|
inputs = layer_utils.get_source_inputs(input_tensor)
|
||
|
else:
|
||
|
inputs = img_input
|
||
|
# Create model.
|
||
|
model = Model(inputs, x, name='resnet50')
|
||
|
|
||
|
# load weights
|
||
|
if weights == 'imagenet':
|
||
|
if include_top:
|
||
|
weights_path = get_file(
|
||
|
'resnet50_weights_tf_dim_ordering_tf_kernels.h5',
|
||
|
WEIGHTS_PATH,
|
||
|
cache_subdir='models',
|
||
|
md5_hash='a7b3fe01876f51b976af0dea6bc144eb')
|
||
|
else:
|
||
|
weights_path = get_file(
|
||
|
'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
|
||
|
WEIGHTS_PATH_NO_TOP,
|
||
|
cache_subdir='models',
|
||
|
md5_hash='a268eb855778b3df3c7506639542a6af')
|
||
|
model.load_weights(weights_path)
|
||
|
elif weights is not None:
|
||
|
model.load_weights(weights)
|
||
|
|
||
|
return model
|