119 lines
4.6 KiB
Python
119 lines
4.6 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
|
||
|
"""Adagrad optimizer for TensorFlow."""
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from tensorflow.contrib.optimizer_v2 import optimizer_v2
|
||
|
from tensorflow.python.ops import array_ops
|
||
|
from tensorflow.python.ops import gen_array_ops
|
||
|
from tensorflow.python.ops import init_ops
|
||
|
from tensorflow.python.ops import math_ops
|
||
|
from tensorflow.python.training import training_ops
|
||
|
|
||
|
|
||
|
class AdagradOptimizer(optimizer_v2.OptimizerV2):
|
||
|
"""Optimizer that implements the Adagrad algorithm.
|
||
|
|
||
|
See this [paper](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
|
||
|
or this
|
||
|
[intro](http://cs.stanford.edu/~ppasupat/a9online/uploads/proximal_notes.pdf).
|
||
|
"""
|
||
|
|
||
|
def __init__(self, learning_rate, initial_accumulator_value=0.1,
|
||
|
use_locking=False, name="Adagrad"):
|
||
|
"""Construct a new Adagrad optimizer.
|
||
|
|
||
|
The learning_rate arg below is a hyperparameter, where a hyperparameter is
|
||
|
defined as a scalar Tensor, a regular Python value or a callable (which
|
||
|
will be evaluated when `apply_gradients` is called) returning a scalar
|
||
|
Tensor or a Python value.
|
||
|
|
||
|
Args:
|
||
|
learning_rate: A float hyperparameter. The learning rate.
|
||
|
initial_accumulator_value: A floating point value.
|
||
|
Starting value for the accumulators, must be positive.
|
||
|
use_locking: If `True` use locks for update operations.
|
||
|
name: Optional name prefix for the operations created when applying
|
||
|
gradients. Defaults to "Adagrad".
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If the `initial_accumulator_value` is invalid.
|
||
|
"""
|
||
|
if initial_accumulator_value <= 0.0:
|
||
|
raise ValueError("initial_accumulator_value must be positive: %s" %
|
||
|
initial_accumulator_value)
|
||
|
super(AdagradOptimizer, self).__init__(use_locking, name)
|
||
|
self._set_hyper("learning_rate", learning_rate)
|
||
|
|
||
|
self._initial_accumulator_value = initial_accumulator_value
|
||
|
|
||
|
def _create_vars(self, var_list, state):
|
||
|
for v in var_list:
|
||
|
# TODO(isaprykin): Delete colocate_with(v) from other optimizers and
|
||
|
# confirm that colocation will happen anyway.
|
||
|
dtype = v.dtype.base_dtype
|
||
|
if v.get_shape().is_fully_defined():
|
||
|
init = init_ops.constant_initializer(self._initial_accumulator_value,
|
||
|
dtype=dtype)
|
||
|
else:
|
||
|
# Use a Tensor instead of initializer if variable does not have static
|
||
|
# shape.
|
||
|
init_constant = gen_array_ops.fill(
|
||
|
array_ops.shape(v), self._initial_accumulator_value)
|
||
|
init = math_ops.cast(init_constant, dtype)
|
||
|
state.create_slot_with_initializer(v, init, v.get_shape(), dtype,
|
||
|
"accumulator")
|
||
|
|
||
|
def _apply_dense(self, grad, var, state):
|
||
|
acc = state.get_slot(var, "accumulator")
|
||
|
return training_ops.apply_adagrad(
|
||
|
var,
|
||
|
acc,
|
||
|
state.get_hyper("learning_rate", var.dtype.base_dtype),
|
||
|
grad,
|
||
|
use_locking=self._use_locking)
|
||
|
|
||
|
def _resource_apply_dense(self, grad, var, state):
|
||
|
acc = state.get_slot(var, "accumulator")
|
||
|
return training_ops.resource_apply_adagrad(
|
||
|
var.handle,
|
||
|
acc.handle,
|
||
|
state.get_hyper("learning_rate", var.dtype.base_dtype),
|
||
|
grad,
|
||
|
use_locking=self._use_locking)
|
||
|
|
||
|
def _apply_sparse(self, grad, var, state):
|
||
|
acc = state.get_slot(var, "accumulator")
|
||
|
return training_ops.sparse_apply_adagrad(
|
||
|
var,
|
||
|
acc,
|
||
|
state.get_hyper("learning_rate", var.dtype.base_dtype),
|
||
|
grad.values,
|
||
|
grad.indices,
|
||
|
use_locking=self._use_locking)
|
||
|
|
||
|
def _resource_apply_sparse(self, grad, var, indices, state):
|
||
|
acc = state.get_slot(var, "accumulator")
|
||
|
return training_ops.resource_sparse_apply_adagrad(
|
||
|
var.handle,
|
||
|
acc.handle,
|
||
|
state.get_hyper("learning_rate", var.dtype.base_dtype),
|
||
|
grad,
|
||
|
indices,
|
||
|
use_locking=self._use_locking)
|