# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Adagrad optimizer for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.optimizer_v2 import optimizer_v2 from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.training import training_ops class AdagradOptimizer(optimizer_v2.OptimizerV2): """Optimizer that implements the Adagrad algorithm. See this [paper](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) or this [intro](http://cs.stanford.edu/~ppasupat/a9online/uploads/proximal_notes.pdf). """ def __init__(self, learning_rate, initial_accumulator_value=0.1, use_locking=False, name="Adagrad"): """Construct a new Adagrad optimizer. The learning_rate arg below is a hyperparameter, where a hyperparameter is defined as a scalar Tensor, a regular Python value or a callable (which will be evaluated when `apply_gradients` is called) returning a scalar Tensor or a Python value. Args: learning_rate: A float hyperparameter. The learning rate. initial_accumulator_value: A floating point value. Starting value for the accumulators, must be positive. use_locking: If `True` use locks for update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "Adagrad". Raises: ValueError: If the `initial_accumulator_value` is invalid. """ if initial_accumulator_value <= 0.0: raise ValueError("initial_accumulator_value must be positive: %s" % initial_accumulator_value) super(AdagradOptimizer, self).__init__(use_locking, name) self._set_hyper("learning_rate", learning_rate) self._initial_accumulator_value = initial_accumulator_value def _create_vars(self, var_list, state): for v in var_list: # TODO(isaprykin): Delete colocate_with(v) from other optimizers and # confirm that colocation will happen anyway. dtype = v.dtype.base_dtype if v.get_shape().is_fully_defined(): init = init_ops.constant_initializer(self._initial_accumulator_value, dtype=dtype) else: # Use a Tensor instead of initializer if variable does not have static # shape. init_constant = gen_array_ops.fill( array_ops.shape(v), self._initial_accumulator_value) init = math_ops.cast(init_constant, dtype) state.create_slot_with_initializer(v, init, v.get_shape(), dtype, "accumulator") def _apply_dense(self, grad, var, state): acc = state.get_slot(var, "accumulator") return training_ops.apply_adagrad( var, acc, state.get_hyper("learning_rate", var.dtype.base_dtype), grad, use_locking=self._use_locking) def _resource_apply_dense(self, grad, var, state): acc = state.get_slot(var, "accumulator") return training_ops.resource_apply_adagrad( var.handle, acc.handle, state.get_hyper("learning_rate", var.dtype.base_dtype), grad, use_locking=self._use_locking) def _apply_sparse(self, grad, var, state): acc = state.get_slot(var, "accumulator") return training_ops.sparse_apply_adagrad( var, acc, state.get_hyper("learning_rate", var.dtype.base_dtype), grad.values, grad.indices, use_locking=self._use_locking) def _resource_apply_sparse(self, grad, var, indices, state): acc = state.get_slot(var, "accumulator") return training_ops.resource_sparse_apply_adagrad( var.handle, acc.handle, state.get_hyper("learning_rate", var.dtype.base_dtype), grad, indices, use_locking=self._use_locking)