laywerrobot/lib/python3.6/site-packages/sklearn/linear_model/perceptron.py

133 lines
4.9 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
# Author: Mathieu Blondel
# License: BSD 3 clause
from .stochastic_gradient import BaseSGDClassifier
class Perceptron(BaseSGDClassifier):
"""Perceptron
Read more in the :ref:`User Guide <perceptron>`.
Parameters
----------
penalty : None, 'l2' or 'l1' or 'elasticnet'
The penalty (aka regularization term) to be used. Defaults to None.
alpha : float
Constant that multiplies the regularization term if regularization is
used. Defaults to 0.0001
fit_intercept : bool
Whether the intercept should be estimated or not. If False, the
data is assumed to be already centered. Defaults to True.
max_iter : int, optional
The maximum number of passes over the training data (aka epochs).
It only impacts the behavior in the ``fit`` method, and not the
`partial_fit`.
Defaults to 5. Defaults to 1000 from 0.21, or if tol is not None.
.. versionadded:: 0.19
tol : float or None, optional
The stopping criterion. If it is not None, the iterations will stop
when (loss > previous_loss - tol). Defaults to None.
Defaults to 1e-3 from 0.21.
.. versionadded:: 0.19
shuffle : bool, optional, default True
Whether or not the training data should be shuffled after each epoch.
verbose : integer, optional
The verbosity level
eta0 : double
Constant by which the updates are multiplied. Defaults to 1.
n_jobs : integer, optional
The number of CPUs to use to do the OVA (One Versus All, for
multi-class problems) computation. -1 means 'all CPUs'. Defaults
to 1.
random_state : int, RandomState instance or None, optional, default None
The seed of the pseudo random number generator to use when shuffling
the data. If int, random_state is the seed used by the random number
generator; If RandomState instance, random_state is the random number
generator; If None, the random number generator is the RandomState
instance used by `np.random`.
class_weight : dict, {class_label: weight} or "balanced" or None, optional
Preset for the class_weight fit parameter.
Weights associated with classes. If not given, all classes
are supposed to have weight one.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``
warm_start : bool, optional
When set to True, reuse the solution of the previous call to fit as
initialization, otherwise, just erase the previous solution.
n_iter : int, optional
The number of passes over the training data (aka epochs).
Defaults to None. Deprecated, will be removed in 0.21.
.. versionchanged:: 0.19
Deprecated
Attributes
----------
coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\
n_features]
Weights assigned to the features.
intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]
Constants in decision function.
n_iter_ : int
The actual number of iterations to reach the stopping criterion.
For multiclass fits, it is the maximum over every binary fit.
Notes
-----
`Perceptron` and `SGDClassifier` share the same underlying implementation.
In fact, `Perceptron()` is equivalent to `SGDClassifier(loss="perceptron",
eta0=1, learning_rate="constant", penalty=None)`.
See also
--------
SGDClassifier
References
----------
https://en.wikipedia.org/wiki/Perceptron and references therein.
"""
def __init__(self, penalty=None, alpha=0.0001, fit_intercept=True,
max_iter=None, tol=None, shuffle=True, verbose=0, eta0=1.0,
n_jobs=1, random_state=0, class_weight=None,
warm_start=False, n_iter=None):
super(Perceptron, self).__init__(loss="perceptron",
penalty=penalty,
alpha=alpha, l1_ratio=0,
fit_intercept=fit_intercept,
max_iter=max_iter,
tol=tol,
shuffle=shuffle,
verbose=verbose,
random_state=random_state,
learning_rate="constant",
eta0=eta0,
power_t=0.5,
warm_start=warm_start,
class_weight=class_weight,
n_jobs=n_jobs,
n_iter=n_iter)