# Author: Mathieu Blondel # License: BSD 3 clause from .stochastic_gradient import BaseSGDClassifier class Perceptron(BaseSGDClassifier): """Perceptron Read more in the :ref:`User Guide `. Parameters ---------- penalty : None, 'l2' or 'l1' or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to None. alpha : float Constant that multiplies the regularization term if regularization is used. Defaults to 0.0001 fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. max_iter : int, optional The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the ``fit`` method, and not the `partial_fit`. Defaults to 5. Defaults to 1000 from 0.21, or if tol is not None. .. versionadded:: 0.19 tol : float or None, optional The stopping criterion. If it is not None, the iterations will stop when (loss > previous_loss - tol). Defaults to None. Defaults to 1e-3 from 0.21. .. versionadded:: 0.19 shuffle : bool, optional, default True Whether or not the training data should be shuffled after each epoch. verbose : integer, optional The verbosity level eta0 : double Constant by which the updates are multiplied. Defaults to 1. n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to None. Deprecated, will be removed in 0.21. .. versionchanged:: 0.19 Deprecated Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. n_iter_ : int The actual number of iterations to reach the stopping criterion. For multiclass fits, it is the maximum over every binary fit. Notes ----- `Perceptron` and `SGDClassifier` share the same underlying implementation. In fact, `Perceptron()` is equivalent to `SGDClassifier(loss="perceptron", eta0=1, learning_rate="constant", penalty=None)`. See also -------- SGDClassifier References ---------- https://en.wikipedia.org/wiki/Perceptron and references therein. """ def __init__(self, penalty=None, alpha=0.0001, fit_intercept=True, max_iter=None, tol=None, shuffle=True, verbose=0, eta0=1.0, n_jobs=1, random_state=0, class_weight=None, warm_start=False, n_iter=None): super(Perceptron, self).__init__(loss="perceptron", penalty=penalty, alpha=alpha, l1_ratio=0, fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, shuffle=shuffle, verbose=verbose, random_state=random_state, learning_rate="constant", eta0=eta0, power_t=0.5, warm_start=warm_start, class_weight=class_weight, n_jobs=n_jobs, n_iter=n_iter)