351 lines
12 KiB
Python
351 lines
12 KiB
Python
|
"""Factor Analysis.
|
||
|
|
||
|
A latent linear variable model.
|
||
|
|
||
|
FactorAnalysis is similar to probabilistic PCA implemented by PCA.score
|
||
|
While PCA assumes Gaussian noise with the same variance for each
|
||
|
feature, the FactorAnalysis model assumes different variances for
|
||
|
each of them.
|
||
|
|
||
|
This implementation is based on David Barber's Book,
|
||
|
Bayesian Reasoning and Machine Learning,
|
||
|
http://www.cs.ucl.ac.uk/staff/d.barber/brml,
|
||
|
Algorithm 21.1
|
||
|
"""
|
||
|
|
||
|
# Author: Christian Osendorfer <osendorf@gmail.com>
|
||
|
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
|
||
|
# Denis A. Engemann <denis-alexander.engemann@inria.fr>
|
||
|
|
||
|
# License: BSD3
|
||
|
|
||
|
import warnings
|
||
|
from math import sqrt, log
|
||
|
import numpy as np
|
||
|
from scipy import linalg
|
||
|
|
||
|
|
||
|
from ..base import BaseEstimator, TransformerMixin
|
||
|
from ..externals.six.moves import xrange
|
||
|
from ..utils import check_array, check_random_state
|
||
|
from ..utils.extmath import fast_logdet, randomized_svd, squared_norm
|
||
|
from ..utils.validation import check_is_fitted
|
||
|
from ..exceptions import ConvergenceWarning
|
||
|
|
||
|
|
||
|
class FactorAnalysis(BaseEstimator, TransformerMixin):
|
||
|
"""Factor Analysis (FA)
|
||
|
|
||
|
A simple linear generative model with Gaussian latent variables.
|
||
|
|
||
|
The observations are assumed to be caused by a linear transformation of
|
||
|
lower dimensional latent factors and added Gaussian noise.
|
||
|
Without loss of generality the factors are distributed according to a
|
||
|
Gaussian with zero mean and unit covariance. The noise is also zero mean
|
||
|
and has an arbitrary diagonal covariance matrix.
|
||
|
|
||
|
If we would restrict the model further, by assuming that the Gaussian
|
||
|
noise is even isotropic (all diagonal entries are the same) we would obtain
|
||
|
:class:`PPCA`.
|
||
|
|
||
|
FactorAnalysis performs a maximum likelihood estimate of the so-called
|
||
|
`loading` matrix, the transformation of the latent variables to the
|
||
|
observed ones, using expectation-maximization (EM).
|
||
|
|
||
|
Read more in the :ref:`User Guide <FA>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n_components : int | None
|
||
|
Dimensionality of latent space, the number of components
|
||
|
of ``X`` that are obtained after ``transform``.
|
||
|
If None, n_components is set to the number of features.
|
||
|
|
||
|
tol : float
|
||
|
Stopping tolerance for EM algorithm.
|
||
|
|
||
|
copy : bool
|
||
|
Whether to make a copy of X. If ``False``, the input X gets overwritten
|
||
|
during fitting.
|
||
|
|
||
|
max_iter : int
|
||
|
Maximum number of iterations.
|
||
|
|
||
|
noise_variance_init : None | array, shape=(n_features,)
|
||
|
The initial guess of the noise variance for each feature.
|
||
|
If None, it defaults to np.ones(n_features)
|
||
|
|
||
|
svd_method : {'lapack', 'randomized'}
|
||
|
Which SVD method to use. If 'lapack' use standard SVD from
|
||
|
scipy.linalg, if 'randomized' use fast ``randomized_svd`` function.
|
||
|
Defaults to 'randomized'. For most applications 'randomized' will
|
||
|
be sufficiently precise while providing significant speed gains.
|
||
|
Accuracy can also be improved by setting higher values for
|
||
|
`iterated_power`. If this is not sufficient, for maximum precision
|
||
|
you should choose 'lapack'.
|
||
|
|
||
|
iterated_power : int, optional
|
||
|
Number of iterations for the power method. 3 by default. Only used
|
||
|
if ``svd_method`` equals 'randomized'
|
||
|
|
||
|
random_state : int, RandomState instance or None, optional (default=0)
|
||
|
If int, random_state is the seed used by the random number generator;
|
||
|
If RandomState instance, random_state is the random number generator;
|
||
|
If None, the random number generator is the RandomState instance used
|
||
|
by `np.random`. Only used when ``svd_method`` equals 'randomized'.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
components_ : array, [n_components, n_features]
|
||
|
Components with maximum variance.
|
||
|
|
||
|
loglike_ : list, [n_iterations]
|
||
|
The log likelihood at each iteration.
|
||
|
|
||
|
noise_variance_ : array, shape=(n_features,)
|
||
|
The estimated noise variance for each feature.
|
||
|
|
||
|
n_iter_ : int
|
||
|
Number of iterations run.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. David Barber, Bayesian Reasoning and Machine Learning,
|
||
|
Algorithm 21.1
|
||
|
|
||
|
.. Christopher M. Bishop: Pattern Recognition and Machine Learning,
|
||
|
Chapter 12.2.4
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
PCA: Principal component analysis is also a latent linear variable model
|
||
|
which however assumes equal noise variance for each feature.
|
||
|
This extra assumption makes probabilistic PCA faster as it can be
|
||
|
computed in closed form.
|
||
|
FastICA: Independent component analysis, a latent variable model with
|
||
|
non-Gaussian latent variables.
|
||
|
"""
|
||
|
def __init__(self, n_components=None, tol=1e-2, copy=True, max_iter=1000,
|
||
|
noise_variance_init=None, svd_method='randomized',
|
||
|
iterated_power=3, random_state=0):
|
||
|
self.n_components = n_components
|
||
|
self.copy = copy
|
||
|
self.tol = tol
|
||
|
self.max_iter = max_iter
|
||
|
if svd_method not in ['lapack', 'randomized']:
|
||
|
raise ValueError('SVD method %s is not supported. Please consider'
|
||
|
' the documentation' % svd_method)
|
||
|
self.svd_method = svd_method
|
||
|
|
||
|
self.noise_variance_init = noise_variance_init
|
||
|
self.iterated_power = iterated_power
|
||
|
self.random_state = random_state
|
||
|
|
||
|
def fit(self, X, y=None):
|
||
|
"""Fit the FactorAnalysis model to X using EM
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape (n_samples, n_features)
|
||
|
Training data.
|
||
|
|
||
|
y : Ignored.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self
|
||
|
"""
|
||
|
X = check_array(X, copy=self.copy, dtype=np.float64)
|
||
|
|
||
|
n_samples, n_features = X.shape
|
||
|
n_components = self.n_components
|
||
|
if n_components is None:
|
||
|
n_components = n_features
|
||
|
self.mean_ = np.mean(X, axis=0)
|
||
|
X -= self.mean_
|
||
|
|
||
|
# some constant terms
|
||
|
nsqrt = sqrt(n_samples)
|
||
|
llconst = n_features * log(2. * np.pi) + n_components
|
||
|
var = np.var(X, axis=0)
|
||
|
|
||
|
if self.noise_variance_init is None:
|
||
|
psi = np.ones(n_features, dtype=X.dtype)
|
||
|
else:
|
||
|
if len(self.noise_variance_init) != n_features:
|
||
|
raise ValueError("noise_variance_init dimension does not "
|
||
|
"with number of features : %d != %d" %
|
||
|
(len(self.noise_variance_init), n_features))
|
||
|
psi = np.array(self.noise_variance_init)
|
||
|
|
||
|
loglike = []
|
||
|
old_ll = -np.inf
|
||
|
SMALL = 1e-12
|
||
|
|
||
|
# we'll modify svd outputs to return unexplained variance
|
||
|
# to allow for unified computation of loglikelihood
|
||
|
if self.svd_method == 'lapack':
|
||
|
def my_svd(X):
|
||
|
_, s, V = linalg.svd(X, full_matrices=False)
|
||
|
return (s[:n_components], V[:n_components],
|
||
|
squared_norm(s[n_components:]))
|
||
|
elif self.svd_method == 'randomized':
|
||
|
random_state = check_random_state(self.random_state)
|
||
|
|
||
|
def my_svd(X):
|
||
|
_, s, V = randomized_svd(X, n_components,
|
||
|
random_state=random_state,
|
||
|
n_iter=self.iterated_power)
|
||
|
return s, V, squared_norm(X) - squared_norm(s)
|
||
|
else:
|
||
|
raise ValueError('SVD method %s is not supported. Please consider'
|
||
|
' the documentation' % self.svd_method)
|
||
|
|
||
|
for i in xrange(self.max_iter):
|
||
|
# SMALL helps numerics
|
||
|
sqrt_psi = np.sqrt(psi) + SMALL
|
||
|
s, V, unexp_var = my_svd(X / (sqrt_psi * nsqrt))
|
||
|
s **= 2
|
||
|
# Use 'maximum' here to avoid sqrt problems.
|
||
|
W = np.sqrt(np.maximum(s - 1., 0.))[:, np.newaxis] * V
|
||
|
del V
|
||
|
W *= sqrt_psi
|
||
|
|
||
|
# loglikelihood
|
||
|
ll = llconst + np.sum(np.log(s))
|
||
|
ll += unexp_var + np.sum(np.log(psi))
|
||
|
ll *= -n_samples / 2.
|
||
|
loglike.append(ll)
|
||
|
if (ll - old_ll) < self.tol:
|
||
|
break
|
||
|
old_ll = ll
|
||
|
|
||
|
psi = np.maximum(var - np.sum(W ** 2, axis=0), SMALL)
|
||
|
else:
|
||
|
warnings.warn('FactorAnalysis did not converge.' +
|
||
|
' You might want' +
|
||
|
' to increase the number of iterations.',
|
||
|
ConvergenceWarning)
|
||
|
|
||
|
self.components_ = W
|
||
|
self.noise_variance_ = psi
|
||
|
self.loglike_ = loglike
|
||
|
self.n_iter_ = i + 1
|
||
|
return self
|
||
|
|
||
|
def transform(self, X):
|
||
|
"""Apply dimensionality reduction to X using the model.
|
||
|
|
||
|
Compute the expected mean of the latent variables.
|
||
|
See Barber, 21.2.33 (or Bishop, 12.66).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape (n_samples, n_features)
|
||
|
Training data.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X_new : array-like, shape (n_samples, n_components)
|
||
|
The latent variables of X.
|
||
|
"""
|
||
|
check_is_fitted(self, 'components_')
|
||
|
|
||
|
X = check_array(X)
|
||
|
Ih = np.eye(len(self.components_))
|
||
|
|
||
|
X_transformed = X - self.mean_
|
||
|
|
||
|
Wpsi = self.components_ / self.noise_variance_
|
||
|
cov_z = linalg.inv(Ih + np.dot(Wpsi, self.components_.T))
|
||
|
tmp = np.dot(X_transformed, Wpsi.T)
|
||
|
X_transformed = np.dot(tmp, cov_z)
|
||
|
|
||
|
return X_transformed
|
||
|
|
||
|
def get_covariance(self):
|
||
|
"""Compute data covariance with the FactorAnalysis model.
|
||
|
|
||
|
``cov = components_.T * components_ + diag(noise_variance)``
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
cov : array, shape (n_features, n_features)
|
||
|
Estimated covariance of data.
|
||
|
"""
|
||
|
check_is_fitted(self, 'components_')
|
||
|
|
||
|
cov = np.dot(self.components_.T, self.components_)
|
||
|
cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace
|
||
|
return cov
|
||
|
|
||
|
def get_precision(self):
|
||
|
"""Compute data precision matrix with the FactorAnalysis model.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
precision : array, shape (n_features, n_features)
|
||
|
Estimated precision of data.
|
||
|
"""
|
||
|
check_is_fitted(self, 'components_')
|
||
|
|
||
|
n_features = self.components_.shape[1]
|
||
|
|
||
|
# handle corner cases first
|
||
|
if self.n_components == 0:
|
||
|
return np.diag(1. / self.noise_variance_)
|
||
|
if self.n_components == n_features:
|
||
|
return linalg.inv(self.get_covariance())
|
||
|
|
||
|
# Get precision using matrix inversion lemma
|
||
|
components_ = self.components_
|
||
|
precision = np.dot(components_ / self.noise_variance_, components_.T)
|
||
|
precision.flat[::len(precision) + 1] += 1.
|
||
|
precision = np.dot(components_.T,
|
||
|
np.dot(linalg.inv(precision), components_))
|
||
|
precision /= self.noise_variance_[:, np.newaxis]
|
||
|
precision /= -self.noise_variance_[np.newaxis, :]
|
||
|
precision.flat[::len(precision) + 1] += 1. / self.noise_variance_
|
||
|
return precision
|
||
|
|
||
|
def score_samples(self, X):
|
||
|
"""Compute the log-likelihood of each sample
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array, shape (n_samples, n_features)
|
||
|
The data
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ll : array, shape (n_samples,)
|
||
|
Log-likelihood of each sample under the current model
|
||
|
"""
|
||
|
check_is_fitted(self, 'components_')
|
||
|
|
||
|
Xr = X - self.mean_
|
||
|
precision = self.get_precision()
|
||
|
n_features = X.shape[1]
|
||
|
log_like = np.zeros(X.shape[0])
|
||
|
log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1)
|
||
|
log_like -= .5 * (n_features * log(2. * np.pi)
|
||
|
- fast_logdet(precision))
|
||
|
return log_like
|
||
|
|
||
|
def score(self, X, y=None):
|
||
|
"""Compute the average log-likelihood of the samples
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array, shape (n_samples, n_features)
|
||
|
The data
|
||
|
|
||
|
y : Ignored.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ll : float
|
||
|
Average log-likelihood of the samples under the current model
|
||
|
"""
|
||
|
return np.mean(self.score_samples(X))
|