"""Factor Analysis. A latent linear variable model. FactorAnalysis is similar to probabilistic PCA implemented by PCA.score While PCA assumes Gaussian noise with the same variance for each feature, the FactorAnalysis model assumes different variances for each of them. This implementation is based on David Barber's Book, Bayesian Reasoning and Machine Learning, http://www.cs.ucl.ac.uk/staff/d.barber/brml, Algorithm 21.1 """ # Author: Christian Osendorfer # Alexandre Gramfort # Denis A. Engemann # License: BSD3 import warnings from math import sqrt, log import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..externals.six.moves import xrange from ..utils import check_array, check_random_state from ..utils.extmath import fast_logdet, randomized_svd, squared_norm from ..utils.validation import check_is_fitted from ..exceptions import ConvergenceWarning class FactorAnalysis(BaseEstimator, TransformerMixin): """Factor Analysis (FA) A simple linear generative model with Gaussian latent variables. The observations are assumed to be caused by a linear transformation of lower dimensional latent factors and added Gaussian noise. Without loss of generality the factors are distributed according to a Gaussian with zero mean and unit covariance. The noise is also zero mean and has an arbitrary diagonal covariance matrix. If we would restrict the model further, by assuming that the Gaussian noise is even isotropic (all diagonal entries are the same) we would obtain :class:`PPCA`. FactorAnalysis performs a maximum likelihood estimate of the so-called `loading` matrix, the transformation of the latent variables to the observed ones, using expectation-maximization (EM). Read more in the :ref:`User Guide `. Parameters ---------- n_components : int | None Dimensionality of latent space, the number of components of ``X`` that are obtained after ``transform``. If None, n_components is set to the number of features. tol : float Stopping tolerance for EM algorithm. copy : bool Whether to make a copy of X. If ``False``, the input X gets overwritten during fitting. max_iter : int Maximum number of iterations. noise_variance_init : None | array, shape=(n_features,) The initial guess of the noise variance for each feature. If None, it defaults to np.ones(n_features) svd_method : {'lapack', 'randomized'} Which SVD method to use. If 'lapack' use standard SVD from scipy.linalg, if 'randomized' use fast ``randomized_svd`` function. Defaults to 'randomized'. For most applications 'randomized' will be sufficiently precise while providing significant speed gains. Accuracy can also be improved by setting higher values for `iterated_power`. If this is not sufficient, for maximum precision you should choose 'lapack'. iterated_power : int, optional Number of iterations for the power method. 3 by default. Only used if ``svd_method`` equals 'randomized' random_state : int, RandomState instance or None, optional (default=0) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Only used when ``svd_method`` equals 'randomized'. Attributes ---------- components_ : array, [n_components, n_features] Components with maximum variance. loglike_ : list, [n_iterations] The log likelihood at each iteration. noise_variance_ : array, shape=(n_features,) The estimated noise variance for each feature. n_iter_ : int Number of iterations run. References ---------- .. David Barber, Bayesian Reasoning and Machine Learning, Algorithm 21.1 .. Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 12.2.4 See also -------- PCA: Principal component analysis is also a latent linear variable model which however assumes equal noise variance for each feature. This extra assumption makes probabilistic PCA faster as it can be computed in closed form. FastICA: Independent component analysis, a latent variable model with non-Gaussian latent variables. """ def __init__(self, n_components=None, tol=1e-2, copy=True, max_iter=1000, noise_variance_init=None, svd_method='randomized', iterated_power=3, random_state=0): self.n_components = n_components self.copy = copy self.tol = tol self.max_iter = max_iter if svd_method not in ['lapack', 'randomized']: raise ValueError('SVD method %s is not supported. Please consider' ' the documentation' % svd_method) self.svd_method = svd_method self.noise_variance_init = noise_variance_init self.iterated_power = iterated_power self.random_state = random_state def fit(self, X, y=None): """Fit the FactorAnalysis model to X using EM Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : Ignored. Returns ------- self """ X = check_array(X, copy=self.copy, dtype=np.float64) n_samples, n_features = X.shape n_components = self.n_components if n_components is None: n_components = n_features self.mean_ = np.mean(X, axis=0) X -= self.mean_ # some constant terms nsqrt = sqrt(n_samples) llconst = n_features * log(2. * np.pi) + n_components var = np.var(X, axis=0) if self.noise_variance_init is None: psi = np.ones(n_features, dtype=X.dtype) else: if len(self.noise_variance_init) != n_features: raise ValueError("noise_variance_init dimension does not " "with number of features : %d != %d" % (len(self.noise_variance_init), n_features)) psi = np.array(self.noise_variance_init) loglike = [] old_ll = -np.inf SMALL = 1e-12 # we'll modify svd outputs to return unexplained variance # to allow for unified computation of loglikelihood if self.svd_method == 'lapack': def my_svd(X): _, s, V = linalg.svd(X, full_matrices=False) return (s[:n_components], V[:n_components], squared_norm(s[n_components:])) elif self.svd_method == 'randomized': random_state = check_random_state(self.random_state) def my_svd(X): _, s, V = randomized_svd(X, n_components, random_state=random_state, n_iter=self.iterated_power) return s, V, squared_norm(X) - squared_norm(s) else: raise ValueError('SVD method %s is not supported. Please consider' ' the documentation' % self.svd_method) for i in xrange(self.max_iter): # SMALL helps numerics sqrt_psi = np.sqrt(psi) + SMALL s, V, unexp_var = my_svd(X / (sqrt_psi * nsqrt)) s **= 2 # Use 'maximum' here to avoid sqrt problems. W = np.sqrt(np.maximum(s - 1., 0.))[:, np.newaxis] * V del V W *= sqrt_psi # loglikelihood ll = llconst + np.sum(np.log(s)) ll += unexp_var + np.sum(np.log(psi)) ll *= -n_samples / 2. loglike.append(ll) if (ll - old_ll) < self.tol: break old_ll = ll psi = np.maximum(var - np.sum(W ** 2, axis=0), SMALL) else: warnings.warn('FactorAnalysis did not converge.' + ' You might want' + ' to increase the number of iterations.', ConvergenceWarning) self.components_ = W self.noise_variance_ = psi self.loglike_ = loglike self.n_iter_ = i + 1 return self def transform(self, X): """Apply dimensionality reduction to X using the model. Compute the expected mean of the latent variables. See Barber, 21.2.33 (or Bishop, 12.66). Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. Returns ------- X_new : array-like, shape (n_samples, n_components) The latent variables of X. """ check_is_fitted(self, 'components_') X = check_array(X) Ih = np.eye(len(self.components_)) X_transformed = X - self.mean_ Wpsi = self.components_ / self.noise_variance_ cov_z = linalg.inv(Ih + np.dot(Wpsi, self.components_.T)) tmp = np.dot(X_transformed, Wpsi.T) X_transformed = np.dot(tmp, cov_z) return X_transformed def get_covariance(self): """Compute data covariance with the FactorAnalysis model. ``cov = components_.T * components_ + diag(noise_variance)`` Returns ------- cov : array, shape (n_features, n_features) Estimated covariance of data. """ check_is_fitted(self, 'components_') cov = np.dot(self.components_.T, self.components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the FactorAnalysis model. Returns ------- precision : array, shape (n_features, n_features) Estimated precision of data. """ check_is_fitted(self, 'components_') n_features = self.components_.shape[1] # handle corner cases first if self.n_components == 0: return np.diag(1. / self.noise_variance_) if self.n_components == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ precision = np.dot(components_ / self.noise_variance_, components_.T) precision.flat[::len(precision) + 1] += 1. precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= self.noise_variance_[:, np.newaxis] precision /= -self.noise_variance_[np.newaxis, :] precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision def score_samples(self, X): """Compute the log-likelihood of each sample Parameters ---------- X : array, shape (n_samples, n_features) The data Returns ------- ll : array, shape (n_samples,) Log-likelihood of each sample under the current model """ check_is_fitted(self, 'components_') Xr = X - self.mean_ precision = self.get_precision() n_features = X.shape[1] log_like = np.zeros(X.shape[0]) log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1) log_like -= .5 * (n_features * log(2. * np.pi) - fast_logdet(precision)) return log_like def score(self, X, y=None): """Compute the average log-likelihood of the samples Parameters ---------- X : array, shape (n_samples, n_features) The data y : Ignored. Returns ------- ll : float Average log-likelihood of the samples under the current model """ return np.mean(self.score_samples(X))