laywerrobot/lib/python3.6/site-packages/scipy/special/tests/test_kolmogorov.py

243 lines
8.9 KiB
Python
Raw Normal View History

2020-08-27 21:55:39 +02:00
from __future__ import division, print_function, absolute_import
import itertools
import numpy as np
from numpy.testing import assert_
from scipy.special._testutils import FuncData
import pytest
from scipy.special import smirnov, smirnovi, kolmogorov, kolmogi
_rtol = 1e-10
class TestSmirnov(object):
def test_nan(self):
assert_(np.isnan(smirnov(1, np.nan)))
def test_basic(self):
dataset = [(1, 0.1, 0.9),
(1, 0.875, 0.125),
(2, 0.875, 0.125 * 0.125),
(3, 0.875, 0.125 * 0.125 * 0.125)]
dataset = np.asarray(dataset)
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check()
def test_x_equals_0(self):
dataset = [(n, 0, 1) for n in itertools.chain(range(2, 20), range(1010, 1020))]
dataset = np.asarray(dataset)
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check()
def test_x_equals_1(self):
dataset = [(n, 1, 0) for n in itertools.chain(range(2, 20), range(1010, 1020))]
dataset = np.asarray(dataset)
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check()
def test_x_equals_0point5(self):
dataset = [(1, 0.5, 0.5),
(2, 0.5, 0.25),
(3, 0.5, 0.166666666667),
(4, 0.5, 0.09375),
(5, 0.5, 0.056),
(6, 0.5, 0.0327932098765),
(7, 0.5, 0.0191958707681),
(8, 0.5, 0.0112953186035),
(9, 0.5, 0.00661933257355),
(10, 0.5, 0.003888705)]
dataset = np.asarray(dataset)
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check()
def test_n_equals_1(self):
x = np.linspace(0, 1, 101, endpoint=True)
dataset = np.column_stack([[1]*len(x), x, 1-x])
# dataset = np.asarray(dataset)
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check()
def test_n_equals_2(self):
x = np.linspace(0.5, 1, 101, endpoint=True)
p = np.power(1-x, 2)
n = np.array([2] * len(x))
dataset = np.column_stack([n, x, p])
# dataset = np.asarray(dataset)
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check()
def test_n_equals_3(self):
x = np.linspace(0.7, 1, 31, endpoint=True)
p = np.power(1-x, 3)
n = np.array([3] * len(x))
dataset = np.column_stack([n, x, p])
# dataset = np.asarray(dataset)
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check()
def test_n_large(self):
# test for large values of n
# Probabilities should go down as n goes up
x = 0.4
pvals = np.array([smirnov(n, x) for n in range(400, 1100, 20)])
dfs = np.diff(pvals)
assert_(np.all(dfs <= 0), msg='Not all diffs negative %s' % dfs)
dataset = [(1000, 1 - 1.0/2000, np.power(2000.0, -1000))]
dataset = np.asarray(dataset)
FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check()
# Check asymptotic behaviour
dataset = [(n, 1.0 / np.sqrt(n), np.exp(-2)) for n in range(1000, 5000, 1000)]
dataset = np.asarray(dataset)
FuncData(smirnov, dataset, (0, 1), 2, rtol=.05).check()
class TestSmirnovi(object):
def test_nan(self):
assert_(np.isnan(smirnovi(1, np.nan)))
@pytest.mark.xfail(reason="test fails; smirnovi() is not always accurate")
def test_basic(self):
dataset = [(1, 0.4, 0.6),
(1, 0.6, 0.4),
(1, 0.99, 0.01),
(1, 0.01, 0.99),
(2, 0.125 * 0.125, 0.875),
(3, 0.125 * 0.125 * 0.125, 0.875),
(10, 1.0 / 16 ** 10, 1 - 1.0 / 16)]
dataset = np.asarray(dataset)
FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check()
@pytest.mark.xfail(reason="test fails; smirnovi(_,0) is not accurate")
def test_x_equals_0(self):
dataset = [(n, 0, 1) for n in itertools.chain(range(2, 20), range(1010, 1020))]
dataset = np.asarray(dataset)
FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check()
def test_x_equals_1(self):
dataset = [(n, 1, 0) for n in itertools.chain(range(2, 20), range(1010, 1020))]
dataset = np.asarray(dataset)
FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check()
@pytest.mark.xfail(reason="test fails; smirnovi(1,) is not accurate")
def test_n_equals_1(self):
pp = np.linspace(0, 1, 101, endpoint=True)
dataset = [(1, p, 1-p) for p in pp]
dataset = np.asarray(dataset)
FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check()
@pytest.mark.xfail(reason="test fails; smirnovi(2,_) is not accurate")
def test_n_equals_2(self):
x = np.linspace(0.5, 1, 101, endpoint=True)
p = np.power(1-x, 2)
n = np.array([2] * len(x))
dataset = np.column_stack([n, p, x])
# dataset = np.asarray(dataset)
FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check()
@pytest.mark.xfail(reason="test fails; smirnovi(3,_) is not accurate")
def test_n_equals_3(self):
x = np.linspace(0.7, 1, 31, endpoint=True)
p = np.power(1-x, 3)
n = np.array([3] * len(x))
dataset = np.column_stack([n, p, x])
# dataset = np.asarray(dataset)
FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check()
@pytest.mark.xfail(reason="test fails; smirnovi(_,_) is not accurate")
def test_round_trip(self):
def _sm_smi(n, p):
return smirnov(n, smirnovi(n, p))
dataset = [(1, 0.4, 0.4),
(1, 0.6, 0.6),
(2, 0.875, 0.875),
(3, 0.875, 0.875),
(3, 0.125, 0.125),
(10, 0.999, 0.999),
(10, 0.0001, 0.0001)]
dataset = np.asarray(dataset)
FuncData(_sm_smi, dataset, (0, 1), 2, rtol=_rtol).check()
def test_x_equals_0point5(self):
dataset = [(1, 0.5, 0.5),
(2, 0.5, 0.366025403784),
(2, 0.25, 0.5),
(3, 0.5, 0.297156508177),
(4, 0.5, 0.255520481121),
(5, 0.5, 0.234559536069),
(6, 0.5, 0.21715965898),
(7, 0.5, 0.202722580034),
(8, 0.5, 0.190621765256),
(9, 0.5, 0.180363501362),
(10, 0.5, 0.17157867006)]
dataset = np.asarray(dataset)
FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check()
class TestKolmogorov(object):
def test_nan(self):
assert_(np.isnan(kolmogorov(np.nan)))
def test_basic(self):
dataset = [(0, 1.0),
(0.5, 0.96394524366487511),
(1, 0.26999967167735456),
(2, 0.00067092525577969533)]
dataset = np.asarray(dataset)
FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check()
def test_smallx(self):
epsilon = 0.1 ** np.arange(1, 14)
x = np.array([0.571173265106, 0.441027698518, 0.374219690278, 0.331392659217,
0.300820537459, 0.277539353999, 0.259023494805, 0.243829561254,
0.231063086389, 0.220135543236, 0.210641372041, 0.202290283658,
0.19487060742])
dataset = np.column_stack([x, 1-epsilon])
FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check()
@pytest.mark.xfail(reason="test fails; kolmogi() is not accurate for small p")
def test_round_trip(self):
def _ki_k(_x):
return kolmogi(kolmogorov(_x))
x = np.linspace(0.0, 2.0, 21, endpoint=True)
dataset = np.column_stack([x, x])
FuncData(_ki_k, dataset, (0,), 1, rtol=_rtol).check()
class TestKolmogi(object):
def test_nan(self):
assert_(np.isnan(kolmogi(np.nan)))
@pytest.mark.xfail(reason="test fails; kolmogi() is not accurate for small p")
def test_basic(self):
dataset = [(1.0, 0),
(0.96394524366487511, 0.5),
(0.26999967167735456, 1),
(0.00067092525577969533, 2)]
dataset = np.asarray(dataset)
FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
@pytest.mark.xfail(reason="test fails; kolmogi() is not accurate for small p")
def test_smallp(self):
epsilon = 0.1 ** np.arange(1, 14)
x = np.array([0.571173265106, 0.441027698518, 0.374219690278, 0.331392659217,
0.300820537459, 0.277539353999, 0.259023494805, 0.243829561254,
0.231063086389, 0.220135543236, 0.210641372041, 0.202290283658,
0.19487060742])
dataset = np.column_stack([1-epsilon, x])
FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check()
def test_round_trip(self):
def _k_ki(_p):
return kolmogorov(kolmogi(_p))
p = np.linspace(0.1, 1.0, 10, endpoint=True)
dataset = np.column_stack([p, p])
FuncData(_k_ki, dataset, (0,), 1, rtol=_rtol).check()