from __future__ import division, print_function, absolute_import import itertools import numpy as np from numpy.testing import assert_ from scipy.special._testutils import FuncData import pytest from scipy.special import smirnov, smirnovi, kolmogorov, kolmogi _rtol = 1e-10 class TestSmirnov(object): def test_nan(self): assert_(np.isnan(smirnov(1, np.nan))) def test_basic(self): dataset = [(1, 0.1, 0.9), (1, 0.875, 0.125), (2, 0.875, 0.125 * 0.125), (3, 0.875, 0.125 * 0.125 * 0.125)] dataset = np.asarray(dataset) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check() def test_x_equals_0(self): dataset = [(n, 0, 1) for n in itertools.chain(range(2, 20), range(1010, 1020))] dataset = np.asarray(dataset) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check() def test_x_equals_1(self): dataset = [(n, 1, 0) for n in itertools.chain(range(2, 20), range(1010, 1020))] dataset = np.asarray(dataset) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check() def test_x_equals_0point5(self): dataset = [(1, 0.5, 0.5), (2, 0.5, 0.25), (3, 0.5, 0.166666666667), (4, 0.5, 0.09375), (5, 0.5, 0.056), (6, 0.5, 0.0327932098765), (7, 0.5, 0.0191958707681), (8, 0.5, 0.0112953186035), (9, 0.5, 0.00661933257355), (10, 0.5, 0.003888705)] dataset = np.asarray(dataset) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check() def test_n_equals_1(self): x = np.linspace(0, 1, 101, endpoint=True) dataset = np.column_stack([[1]*len(x), x, 1-x]) # dataset = np.asarray(dataset) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check() def test_n_equals_2(self): x = np.linspace(0.5, 1, 101, endpoint=True) p = np.power(1-x, 2) n = np.array([2] * len(x)) dataset = np.column_stack([n, x, p]) # dataset = np.asarray(dataset) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check() def test_n_equals_3(self): x = np.linspace(0.7, 1, 31, endpoint=True) p = np.power(1-x, 3) n = np.array([3] * len(x)) dataset = np.column_stack([n, x, p]) # dataset = np.asarray(dataset) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check() def test_n_large(self): # test for large values of n # Probabilities should go down as n goes up x = 0.4 pvals = np.array([smirnov(n, x) for n in range(400, 1100, 20)]) dfs = np.diff(pvals) assert_(np.all(dfs <= 0), msg='Not all diffs negative %s' % dfs) dataset = [(1000, 1 - 1.0/2000, np.power(2000.0, -1000))] dataset = np.asarray(dataset) FuncData(smirnov, dataset, (0, 1), 2, rtol=_rtol).check() # Check asymptotic behaviour dataset = [(n, 1.0 / np.sqrt(n), np.exp(-2)) for n in range(1000, 5000, 1000)] dataset = np.asarray(dataset) FuncData(smirnov, dataset, (0, 1), 2, rtol=.05).check() class TestSmirnovi(object): def test_nan(self): assert_(np.isnan(smirnovi(1, np.nan))) @pytest.mark.xfail(reason="test fails; smirnovi() is not always accurate") def test_basic(self): dataset = [(1, 0.4, 0.6), (1, 0.6, 0.4), (1, 0.99, 0.01), (1, 0.01, 0.99), (2, 0.125 * 0.125, 0.875), (3, 0.125 * 0.125 * 0.125, 0.875), (10, 1.0 / 16 ** 10, 1 - 1.0 / 16)] dataset = np.asarray(dataset) FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check() @pytest.mark.xfail(reason="test fails; smirnovi(_,0) is not accurate") def test_x_equals_0(self): dataset = [(n, 0, 1) for n in itertools.chain(range(2, 20), range(1010, 1020))] dataset = np.asarray(dataset) FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check() def test_x_equals_1(self): dataset = [(n, 1, 0) for n in itertools.chain(range(2, 20), range(1010, 1020))] dataset = np.asarray(dataset) FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check() @pytest.mark.xfail(reason="test fails; smirnovi(1,) is not accurate") def test_n_equals_1(self): pp = np.linspace(0, 1, 101, endpoint=True) dataset = [(1, p, 1-p) for p in pp] dataset = np.asarray(dataset) FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check() @pytest.mark.xfail(reason="test fails; smirnovi(2,_) is not accurate") def test_n_equals_2(self): x = np.linspace(0.5, 1, 101, endpoint=True) p = np.power(1-x, 2) n = np.array([2] * len(x)) dataset = np.column_stack([n, p, x]) # dataset = np.asarray(dataset) FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check() @pytest.mark.xfail(reason="test fails; smirnovi(3,_) is not accurate") def test_n_equals_3(self): x = np.linspace(0.7, 1, 31, endpoint=True) p = np.power(1-x, 3) n = np.array([3] * len(x)) dataset = np.column_stack([n, p, x]) # dataset = np.asarray(dataset) FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check() @pytest.mark.xfail(reason="test fails; smirnovi(_,_) is not accurate") def test_round_trip(self): def _sm_smi(n, p): return smirnov(n, smirnovi(n, p)) dataset = [(1, 0.4, 0.4), (1, 0.6, 0.6), (2, 0.875, 0.875), (3, 0.875, 0.875), (3, 0.125, 0.125), (10, 0.999, 0.999), (10, 0.0001, 0.0001)] dataset = np.asarray(dataset) FuncData(_sm_smi, dataset, (0, 1), 2, rtol=_rtol).check() def test_x_equals_0point5(self): dataset = [(1, 0.5, 0.5), (2, 0.5, 0.366025403784), (2, 0.25, 0.5), (3, 0.5, 0.297156508177), (4, 0.5, 0.255520481121), (5, 0.5, 0.234559536069), (6, 0.5, 0.21715965898), (7, 0.5, 0.202722580034), (8, 0.5, 0.190621765256), (9, 0.5, 0.180363501362), (10, 0.5, 0.17157867006)] dataset = np.asarray(dataset) FuncData(smirnovi, dataset, (0, 1), 2, rtol=_rtol).check() class TestKolmogorov(object): def test_nan(self): assert_(np.isnan(kolmogorov(np.nan))) def test_basic(self): dataset = [(0, 1.0), (0.5, 0.96394524366487511), (1, 0.26999967167735456), (2, 0.00067092525577969533)] dataset = np.asarray(dataset) FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check() def test_smallx(self): epsilon = 0.1 ** np.arange(1, 14) x = np.array([0.571173265106, 0.441027698518, 0.374219690278, 0.331392659217, 0.300820537459, 0.277539353999, 0.259023494805, 0.243829561254, 0.231063086389, 0.220135543236, 0.210641372041, 0.202290283658, 0.19487060742]) dataset = np.column_stack([x, 1-epsilon]) FuncData(kolmogorov, dataset, (0,), 1, rtol=_rtol).check() @pytest.mark.xfail(reason="test fails; kolmogi() is not accurate for small p") def test_round_trip(self): def _ki_k(_x): return kolmogi(kolmogorov(_x)) x = np.linspace(0.0, 2.0, 21, endpoint=True) dataset = np.column_stack([x, x]) FuncData(_ki_k, dataset, (0,), 1, rtol=_rtol).check() class TestKolmogi(object): def test_nan(self): assert_(np.isnan(kolmogi(np.nan))) @pytest.mark.xfail(reason="test fails; kolmogi() is not accurate for small p") def test_basic(self): dataset = [(1.0, 0), (0.96394524366487511, 0.5), (0.26999967167735456, 1), (0.00067092525577969533, 2)] dataset = np.asarray(dataset) FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check() @pytest.mark.xfail(reason="test fails; kolmogi() is not accurate for small p") def test_smallp(self): epsilon = 0.1 ** np.arange(1, 14) x = np.array([0.571173265106, 0.441027698518, 0.374219690278, 0.331392659217, 0.300820537459, 0.277539353999, 0.259023494805, 0.243829561254, 0.231063086389, 0.220135543236, 0.210641372041, 0.202290283658, 0.19487060742]) dataset = np.column_stack([1-epsilon, x]) FuncData(kolmogi, dataset, (0,), 1, rtol=_rtol).check() def test_round_trip(self): def _k_ki(_p): return kolmogorov(kolmogi(_p)) p = np.linspace(0.1, 1.0, 10, endpoint=True) dataset = np.column_stack([p, p]) FuncData(_k_ki, dataset, (0,), 1, rtol=_rtol).check()