486 lines
15 KiB
Python
486 lines
15 KiB
Python
|
# This file is part of h5py, a Python interface to the HDF5 library.
|
||
|
#
|
||
|
# http://www.h5py.org
|
||
|
#
|
||
|
# Copyright 2008-2013 Andrew Collette and contributors
|
||
|
#
|
||
|
# License: Standard 3-clause BSD; see "license.txt" for full license terms
|
||
|
# and contributor agreement.
|
||
|
|
||
|
"""
|
||
|
Tests the h5py.Dataset.__getitem__ method.
|
||
|
|
||
|
This module does not specifically test type conversion. The "type" axis
|
||
|
therefore only tests objects which interact with the slicing system in
|
||
|
unreliable ways; for example, compound and array types.
|
||
|
|
||
|
See test_dataset_getitem_types for type-conversion tests.
|
||
|
|
||
|
Tests are organized into TestCases by dataset shape and type. Test
|
||
|
methods vary by slicing arg type.
|
||
|
|
||
|
1. Dataset shape:
|
||
|
Empty
|
||
|
Scalar
|
||
|
1D
|
||
|
3D
|
||
|
|
||
|
2. Type:
|
||
|
Float
|
||
|
Compound
|
||
|
Array
|
||
|
|
||
|
3. Slicing arg types:
|
||
|
Ellipsis
|
||
|
Empty tuple
|
||
|
Regular slice
|
||
|
Indexing
|
||
|
Index list
|
||
|
Boolean mask
|
||
|
Field names
|
||
|
"""
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
import sys
|
||
|
|
||
|
import numpy as np
|
||
|
import h5py
|
||
|
|
||
|
from ..common import ut, TestCase
|
||
|
|
||
|
|
||
|
class TestEmpty(TestCase):
|
||
|
|
||
|
def setUp(self):
|
||
|
TestCase.setUp(self)
|
||
|
sid = h5py.h5s.create(h5py.h5s.NULL)
|
||
|
tid = h5py.h5t.C_S1.copy()
|
||
|
tid.set_size(10)
|
||
|
dsid = h5py.h5d.create(self.f.id, b'x', tid, sid)
|
||
|
self.dset = h5py.Dataset(dsid)
|
||
|
self.empty_obj = h5py.Empty(np.dtype("S10"))
|
||
|
|
||
|
def test_ndim(self):
|
||
|
""" Verify number of dimensions """
|
||
|
self.assertEquals(self.dset.ndim, 0)
|
||
|
|
||
|
def test_shape(self):
|
||
|
""" Verify shape """
|
||
|
self.assertEquals(self.dset.shape, None)
|
||
|
|
||
|
def test_ellipsis(self):
|
||
|
""" Ellipsis -> ValueError """
|
||
|
self.assertEquals(self.dset[...], self.empty_obj)
|
||
|
|
||
|
def test_tuple(self):
|
||
|
""" () -> IOError """
|
||
|
self.assertEquals(self.dset[()], self.empty_obj)
|
||
|
|
||
|
def test_slice(self):
|
||
|
""" slice -> ValueError """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[0:4]
|
||
|
|
||
|
def test_index(self):
|
||
|
""" index -> ValueError """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[0]
|
||
|
|
||
|
def test_indexlist(self):
|
||
|
""" index list -> ValueError """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[[1,2,5]]
|
||
|
|
||
|
def test_mask(self):
|
||
|
""" mask -> ValueError """
|
||
|
mask = np.array(True, dtype='bool')
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[mask]
|
||
|
|
||
|
def test_fieldnames(self):
|
||
|
""" field name -> ValueError """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset['field']
|
||
|
|
||
|
|
||
|
class TestScalarFloat(TestCase):
|
||
|
|
||
|
def setUp(self):
|
||
|
TestCase.setUp(self)
|
||
|
self.data = np.array(42.5, dtype='f')
|
||
|
self.dset = self.f.create_dataset('x', data=self.data)
|
||
|
|
||
|
def test_ndim(self):
|
||
|
""" Verify number of dimensions """
|
||
|
self.assertEquals(self.dset.ndim, 0)
|
||
|
|
||
|
def test_shape(self):
|
||
|
""" Verify shape """
|
||
|
self.assertEquals(self.dset.shape, tuple())
|
||
|
|
||
|
def test_ellipsis(self):
|
||
|
""" Ellipsis -> scalar ndarray """
|
||
|
out = self.dset[...]
|
||
|
self.assertArrayEqual(out, self.data)
|
||
|
|
||
|
def test_tuple(self):
|
||
|
""" () -> bare item """
|
||
|
out = self.dset[()]
|
||
|
self.assertArrayEqual(out, self.data.item())
|
||
|
|
||
|
def test_slice(self):
|
||
|
""" slice -> ValueError """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[0:4]
|
||
|
|
||
|
def test_index(self):
|
||
|
""" index -> ValueError """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[0]
|
||
|
|
||
|
# FIXME: NumPy has IndexError instead
|
||
|
def test_indexlist(self):
|
||
|
""" index list -> ValueError """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[[1,2,5]]
|
||
|
|
||
|
# FIXME: NumPy permits this
|
||
|
def test_mask(self):
|
||
|
""" mask -> ValueError """
|
||
|
mask = np.array(True, dtype='bool')
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[mask]
|
||
|
|
||
|
def test_fieldnames(self):
|
||
|
""" field name -> ValueError (no fields) """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset['field']
|
||
|
|
||
|
|
||
|
class TestScalarCompound(TestCase):
|
||
|
|
||
|
def setUp(self):
|
||
|
TestCase.setUp(self)
|
||
|
self.data = np.array((42.5, -118, "Hello"), dtype=[('a', 'f'), ('b', 'i'), ('c', '|S10')])
|
||
|
self.dset = self.f.create_dataset('x', data=self.data)
|
||
|
|
||
|
def test_ndim(self):
|
||
|
""" Verify number of dimensions """
|
||
|
self.assertEquals(self.dset.ndim, 0)
|
||
|
|
||
|
def test_shape(self):
|
||
|
""" Verify shape """
|
||
|
self.assertEquals(self.dset.shape, tuple())
|
||
|
|
||
|
def test_ellipsis(self):
|
||
|
""" Ellipsis -> scalar ndarray """
|
||
|
out = self.dset[...]
|
||
|
# assertArrayEqual doesn't work with compounds; do manually
|
||
|
self.assertIsInstance(out, np.ndarray)
|
||
|
self.assertEqual(out.shape, self.data.shape)
|
||
|
self.assertEqual(out.dtype, self.data.dtype)
|
||
|
|
||
|
def test_tuple(self):
|
||
|
""" () -> np.void instance """
|
||
|
out = self.dset[()]
|
||
|
self.assertIsInstance(out, np.void)
|
||
|
self.assertEqual(out.dtype, self.data.dtype)
|
||
|
|
||
|
def test_slice(self):
|
||
|
""" slice -> ValueError """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[0:4]
|
||
|
|
||
|
def test_index(self):
|
||
|
""" index -> ValueError """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[0]
|
||
|
|
||
|
# FIXME: NumPy has IndexError instead
|
||
|
def test_indexlist(self):
|
||
|
""" index list -> ValueError """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[[1,2,5]]
|
||
|
|
||
|
# FIXME: NumPy permits this
|
||
|
def test_mask(self):
|
||
|
""" mask -> ValueError """
|
||
|
mask = np.array(True, dtype='bool')
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[mask]
|
||
|
|
||
|
# FIXME: NumPy returns a scalar ndarray
|
||
|
def test_fieldnames(self):
|
||
|
""" field name -> bare value """
|
||
|
out = self.dset['a']
|
||
|
self.assertIsInstance(out, np.float32)
|
||
|
self.assertEqual(out, self.dset['a'])
|
||
|
|
||
|
|
||
|
class TestScalarArray(TestCase):
|
||
|
|
||
|
def setUp(self):
|
||
|
TestCase.setUp(self)
|
||
|
self.dt = np.dtype('(3,2)f')
|
||
|
self.data = np.array([(3.2, -119), (42, 99.8), (3.14, 0)], dtype='f')
|
||
|
self.dset = self.f.create_dataset('x', (), dtype=self.dt)
|
||
|
self.dset[...] = self.data
|
||
|
|
||
|
def test_ndim(self):
|
||
|
""" Verify number of dimensions """
|
||
|
self.assertEquals(self.data.ndim, 2)
|
||
|
self.assertEquals(self.dset.ndim, 0)
|
||
|
|
||
|
def test_shape(self):
|
||
|
""" Verify shape """
|
||
|
self.assertEquals(self.data.shape, (3, 2))
|
||
|
self.assertEquals(self.dset.shape, tuple())
|
||
|
|
||
|
def test_ellipsis(self):
|
||
|
""" Ellipsis -> ndarray promoted to underlying shape """
|
||
|
out = self.dset[...]
|
||
|
self.assertArrayEqual(out, self.data)
|
||
|
|
||
|
def test_tuple(self):
|
||
|
""" () -> same as ellipsis """
|
||
|
out = self.dset[...]
|
||
|
self.assertArrayEqual(out, self.data)
|
||
|
|
||
|
def test_slice(self):
|
||
|
""" slice -> ValueError """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[0:4]
|
||
|
|
||
|
def test_index(self):
|
||
|
""" index -> ValueError """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[0]
|
||
|
|
||
|
def test_indexlist(self):
|
||
|
""" index list -> ValueError """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[[]]
|
||
|
|
||
|
def test_mask(self):
|
||
|
""" mask -> ValueError """
|
||
|
mask = np.array(True, dtype='bool')
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[mask]
|
||
|
|
||
|
def test_fieldnames(self):
|
||
|
""" field name -> ValueError (no fields) """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset['field']
|
||
|
|
||
|
|
||
|
@ut.skipUnless(h5py.version.hdf5_version_tuple >= (1, 8, 7), 'HDF5 1.8.7+ required')
|
||
|
class Test1DZeroFloat(TestCase):
|
||
|
|
||
|
def setUp(self):
|
||
|
TestCase.setUp(self)
|
||
|
self.data = np.ones((0,), dtype='f')
|
||
|
self.dset = self.f.create_dataset('x', data=self.data)
|
||
|
|
||
|
def test_ndim(self):
|
||
|
""" Verify number of dimensions """
|
||
|
self.assertEquals(self.dset.ndim, 1)
|
||
|
|
||
|
def test_shape(self):
|
||
|
""" Verify shape """
|
||
|
self.assertEquals(self.dset.shape, (0,))
|
||
|
|
||
|
def test_ellipsis(self):
|
||
|
""" Ellipsis -> ndarray of matching shape """
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[...])
|
||
|
|
||
|
def test_tuple(self):
|
||
|
""" () -> same as ellipsis """
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[()])
|
||
|
|
||
|
def test_slice(self):
|
||
|
""" slice -> ndarray of shape (0,) """
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[0:4])
|
||
|
|
||
|
def test_slice_stop_less_than_start(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[7:5])
|
||
|
|
||
|
# FIXME: NumPy raises IndexError
|
||
|
def test_index(self):
|
||
|
""" index -> out of range """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[0]
|
||
|
|
||
|
# FIXME: Under NumPy this works and returns a shape-(0,) array
|
||
|
# Also, at the moment it rasies UnboundLocalError (!)
|
||
|
@ut.expectedFailure
|
||
|
def test_indexlist(self):
|
||
|
""" index list """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[[]]
|
||
|
|
||
|
def test_mask(self):
|
||
|
""" mask -> ndarray of matching shape """
|
||
|
mask = np.ones((0,), dtype='bool')
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[mask])
|
||
|
|
||
|
def test_fieldnames(self):
|
||
|
""" field name -> ValueError (no fields) """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset['field']
|
||
|
|
||
|
|
||
|
class Test1DFloat(TestCase):
|
||
|
|
||
|
def setUp(self):
|
||
|
TestCase.setUp(self)
|
||
|
self.data = np.arange(13).astype('f')
|
||
|
self.dset = self.f.create_dataset('x', data=self.data)
|
||
|
|
||
|
def test_ndim(self):
|
||
|
""" Verify number of dimensions """
|
||
|
self.assertEquals(self.dset.ndim, 1)
|
||
|
|
||
|
def test_shape(self):
|
||
|
""" Verify shape """
|
||
|
self.assertEquals(self.dset.shape, (13,))
|
||
|
|
||
|
def test_ellipsis(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[...])
|
||
|
|
||
|
def test_tuple(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[()])
|
||
|
|
||
|
def test_slice_simple(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[0:4])
|
||
|
|
||
|
def test_slice_zerosize(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[4:4])
|
||
|
|
||
|
def test_slice_strides(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[1:7:3])
|
||
|
|
||
|
def test_slice_negindexes(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[-8:-2:3])
|
||
|
|
||
|
def test_slice_stop_less_than_start(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[7:5])
|
||
|
|
||
|
def test_slice_outofrange(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[100:400:3])
|
||
|
|
||
|
def test_slice_backwards(self):
|
||
|
""" we disallow negative steps """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[::-1]
|
||
|
|
||
|
def test_slice_zerostride(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[::0])
|
||
|
|
||
|
def test_index_simple(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[3])
|
||
|
|
||
|
def test_index_neg(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[-4])
|
||
|
|
||
|
# FIXME: NumPy permits this... it adds a new axis in front
|
||
|
def test_index_none(self):
|
||
|
with self.assertRaises(TypeError):
|
||
|
self.dset[None]
|
||
|
|
||
|
# FIXME: NumPy raises IndexError
|
||
|
# Also this currently raises UnboundLocalError. :(
|
||
|
@ut.expectedFailure
|
||
|
def test_index_illegal(self):
|
||
|
""" Illegal slicing argument """
|
||
|
with self.assertRaises(TypeError):
|
||
|
self.dset[{}]
|
||
|
|
||
|
# FIXME: NumPy raises IndexError
|
||
|
def test_index_outofrange(self):
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[100]
|
||
|
|
||
|
def test_indexlist_simple(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[[1,2,5]])
|
||
|
|
||
|
def test_indexlist_single_index_ellipsis(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[[0], ...])
|
||
|
|
||
|
def test_indexlist_numpyarray_single_index_ellipsis(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[np.array([0]), ...])
|
||
|
|
||
|
def test_indexlist_numpyarray_ellipsis(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[np.array([1, 2, 5]), ...])
|
||
|
|
||
|
# Another UnboundLocalError
|
||
|
@ut.expectedFailure
|
||
|
def test_indexlist_empty(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[[]])
|
||
|
|
||
|
# FIXME: NumPy has IndexError
|
||
|
def test_indexlist_outofrange(self):
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset[[100]]
|
||
|
|
||
|
def test_indexlist_nonmonotonic(self):
|
||
|
""" we require index list values to be strictly increasing """
|
||
|
with self.assertRaises(TypeError):
|
||
|
self.dset[[1,3,2]]
|
||
|
|
||
|
def test_indexlist_repeated(self):
|
||
|
""" we forbid repeated index values """
|
||
|
with self.assertRaises(TypeError):
|
||
|
self.dset[[1,1,2]]
|
||
|
|
||
|
def test_mask_true(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[self.data > -100])
|
||
|
|
||
|
def test_mask_false(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[self.data > 100])
|
||
|
|
||
|
def test_mask_partial(self):
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[self.data > 5])
|
||
|
|
||
|
def test_mask_wrongsize(self):
|
||
|
""" we require the boolean mask shape to match exactly """
|
||
|
with self.assertRaises(TypeError):
|
||
|
self.dset[np.ones((2,), dtype='bool')]
|
||
|
|
||
|
def test_fieldnames(self):
|
||
|
""" field name -> ValueError (no fields) """
|
||
|
with self.assertRaises(ValueError):
|
||
|
self.dset['field']
|
||
|
|
||
|
|
||
|
@ut.skipUnless(h5py.version.hdf5_version_tuple >= (1, 8, 7), 'HDF5 1.8.7+ required')
|
||
|
class Test2DZeroFloat(TestCase):
|
||
|
|
||
|
def setUp(self):
|
||
|
TestCase.setUp(self)
|
||
|
self.data = np.ones((0,3), dtype='f')
|
||
|
self.dset = self.f.create_dataset('x', data=self.data)
|
||
|
|
||
|
def test_ndim(self):
|
||
|
""" Verify number of dimensions """
|
||
|
self.assertEquals(self.dset.ndim, 2)
|
||
|
|
||
|
def test_shape(self):
|
||
|
""" Verify shape """
|
||
|
self.assertEquals(self.dset.shape, (0, 3))
|
||
|
|
||
|
@ut.expectedFailure
|
||
|
def test_indexlist(self):
|
||
|
""" see issue #473 """
|
||
|
self.assertNumpyBehavior(self.dset, self.data, np.s_[:,[0,1,2]])
|
||
|
|
||
|
|
||
|
class TestVeryLargeArray(TestCase):
|
||
|
|
||
|
def setUp(self):
|
||
|
TestCase.setUp(self)
|
||
|
self.dset = self.f.create_dataset('x', shape=(2**15, 2**16))
|
||
|
|
||
|
@ut.skipIf(sys.maxsize < 2**31, 'Maximum integer size >= 2**31 required')
|
||
|
def test_size(self):
|
||
|
self.assertEqual(self.dset.size, 2**31)
|