# This file is part of h5py, a Python interface to the HDF5 library. # # http://www.h5py.org # # Copyright 2008-2013 Andrew Collette and contributors # # License: Standard 3-clause BSD; see "license.txt" for full license terms # and contributor agreement. """ Tests the h5py.Dataset.__getitem__ method. This module does not specifically test type conversion. The "type" axis therefore only tests objects which interact with the slicing system in unreliable ways; for example, compound and array types. See test_dataset_getitem_types for type-conversion tests. Tests are organized into TestCases by dataset shape and type. Test methods vary by slicing arg type. 1. Dataset shape: Empty Scalar 1D 3D 2. Type: Float Compound Array 3. Slicing arg types: Ellipsis Empty tuple Regular slice Indexing Index list Boolean mask Field names """ from __future__ import absolute_import import sys import numpy as np import h5py from ..common import ut, TestCase class TestEmpty(TestCase): def setUp(self): TestCase.setUp(self) sid = h5py.h5s.create(h5py.h5s.NULL) tid = h5py.h5t.C_S1.copy() tid.set_size(10) dsid = h5py.h5d.create(self.f.id, b'x', tid, sid) self.dset = h5py.Dataset(dsid) self.empty_obj = h5py.Empty(np.dtype("S10")) def test_ndim(self): """ Verify number of dimensions """ self.assertEquals(self.dset.ndim, 0) def test_shape(self): """ Verify shape """ self.assertEquals(self.dset.shape, None) def test_ellipsis(self): """ Ellipsis -> ValueError """ self.assertEquals(self.dset[...], self.empty_obj) def test_tuple(self): """ () -> IOError """ self.assertEquals(self.dset[()], self.empty_obj) def test_slice(self): """ slice -> ValueError """ with self.assertRaises(ValueError): self.dset[0:4] def test_index(self): """ index -> ValueError """ with self.assertRaises(ValueError): self.dset[0] def test_indexlist(self): """ index list -> ValueError """ with self.assertRaises(ValueError): self.dset[[1,2,5]] def test_mask(self): """ mask -> ValueError """ mask = np.array(True, dtype='bool') with self.assertRaises(ValueError): self.dset[mask] def test_fieldnames(self): """ field name -> ValueError """ with self.assertRaises(ValueError): self.dset['field'] class TestScalarFloat(TestCase): def setUp(self): TestCase.setUp(self) self.data = np.array(42.5, dtype='f') self.dset = self.f.create_dataset('x', data=self.data) def test_ndim(self): """ Verify number of dimensions """ self.assertEquals(self.dset.ndim, 0) def test_shape(self): """ Verify shape """ self.assertEquals(self.dset.shape, tuple()) def test_ellipsis(self): """ Ellipsis -> scalar ndarray """ out = self.dset[...] self.assertArrayEqual(out, self.data) def test_tuple(self): """ () -> bare item """ out = self.dset[()] self.assertArrayEqual(out, self.data.item()) def test_slice(self): """ slice -> ValueError """ with self.assertRaises(ValueError): self.dset[0:4] def test_index(self): """ index -> ValueError """ with self.assertRaises(ValueError): self.dset[0] # FIXME: NumPy has IndexError instead def test_indexlist(self): """ index list -> ValueError """ with self.assertRaises(ValueError): self.dset[[1,2,5]] # FIXME: NumPy permits this def test_mask(self): """ mask -> ValueError """ mask = np.array(True, dtype='bool') with self.assertRaises(ValueError): self.dset[mask] def test_fieldnames(self): """ field name -> ValueError (no fields) """ with self.assertRaises(ValueError): self.dset['field'] class TestScalarCompound(TestCase): def setUp(self): TestCase.setUp(self) self.data = np.array((42.5, -118, "Hello"), dtype=[('a', 'f'), ('b', 'i'), ('c', '|S10')]) self.dset = self.f.create_dataset('x', data=self.data) def test_ndim(self): """ Verify number of dimensions """ self.assertEquals(self.dset.ndim, 0) def test_shape(self): """ Verify shape """ self.assertEquals(self.dset.shape, tuple()) def test_ellipsis(self): """ Ellipsis -> scalar ndarray """ out = self.dset[...] # assertArrayEqual doesn't work with compounds; do manually self.assertIsInstance(out, np.ndarray) self.assertEqual(out.shape, self.data.shape) self.assertEqual(out.dtype, self.data.dtype) def test_tuple(self): """ () -> np.void instance """ out = self.dset[()] self.assertIsInstance(out, np.void) self.assertEqual(out.dtype, self.data.dtype) def test_slice(self): """ slice -> ValueError """ with self.assertRaises(ValueError): self.dset[0:4] def test_index(self): """ index -> ValueError """ with self.assertRaises(ValueError): self.dset[0] # FIXME: NumPy has IndexError instead def test_indexlist(self): """ index list -> ValueError """ with self.assertRaises(ValueError): self.dset[[1,2,5]] # FIXME: NumPy permits this def test_mask(self): """ mask -> ValueError """ mask = np.array(True, dtype='bool') with self.assertRaises(ValueError): self.dset[mask] # FIXME: NumPy returns a scalar ndarray def test_fieldnames(self): """ field name -> bare value """ out = self.dset['a'] self.assertIsInstance(out, np.float32) self.assertEqual(out, self.dset['a']) class TestScalarArray(TestCase): def setUp(self): TestCase.setUp(self) self.dt = np.dtype('(3,2)f') self.data = np.array([(3.2, -119), (42, 99.8), (3.14, 0)], dtype='f') self.dset = self.f.create_dataset('x', (), dtype=self.dt) self.dset[...] = self.data def test_ndim(self): """ Verify number of dimensions """ self.assertEquals(self.data.ndim, 2) self.assertEquals(self.dset.ndim, 0) def test_shape(self): """ Verify shape """ self.assertEquals(self.data.shape, (3, 2)) self.assertEquals(self.dset.shape, tuple()) def test_ellipsis(self): """ Ellipsis -> ndarray promoted to underlying shape """ out = self.dset[...] self.assertArrayEqual(out, self.data) def test_tuple(self): """ () -> same as ellipsis """ out = self.dset[...] self.assertArrayEqual(out, self.data) def test_slice(self): """ slice -> ValueError """ with self.assertRaises(ValueError): self.dset[0:4] def test_index(self): """ index -> ValueError """ with self.assertRaises(ValueError): self.dset[0] def test_indexlist(self): """ index list -> ValueError """ with self.assertRaises(ValueError): self.dset[[]] def test_mask(self): """ mask -> ValueError """ mask = np.array(True, dtype='bool') with self.assertRaises(ValueError): self.dset[mask] def test_fieldnames(self): """ field name -> ValueError (no fields) """ with self.assertRaises(ValueError): self.dset['field'] @ut.skipUnless(h5py.version.hdf5_version_tuple >= (1, 8, 7), 'HDF5 1.8.7+ required') class Test1DZeroFloat(TestCase): def setUp(self): TestCase.setUp(self) self.data = np.ones((0,), dtype='f') self.dset = self.f.create_dataset('x', data=self.data) def test_ndim(self): """ Verify number of dimensions """ self.assertEquals(self.dset.ndim, 1) def test_shape(self): """ Verify shape """ self.assertEquals(self.dset.shape, (0,)) def test_ellipsis(self): """ Ellipsis -> ndarray of matching shape """ self.assertNumpyBehavior(self.dset, self.data, np.s_[...]) def test_tuple(self): """ () -> same as ellipsis """ self.assertNumpyBehavior(self.dset, self.data, np.s_[()]) def test_slice(self): """ slice -> ndarray of shape (0,) """ self.assertNumpyBehavior(self.dset, self.data, np.s_[0:4]) def test_slice_stop_less_than_start(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[7:5]) # FIXME: NumPy raises IndexError def test_index(self): """ index -> out of range """ with self.assertRaises(ValueError): self.dset[0] # FIXME: Under NumPy this works and returns a shape-(0,) array # Also, at the moment it rasies UnboundLocalError (!) @ut.expectedFailure def test_indexlist(self): """ index list """ with self.assertRaises(ValueError): self.dset[[]] def test_mask(self): """ mask -> ndarray of matching shape """ mask = np.ones((0,), dtype='bool') self.assertNumpyBehavior(self.dset, self.data, np.s_[mask]) def test_fieldnames(self): """ field name -> ValueError (no fields) """ with self.assertRaises(ValueError): self.dset['field'] class Test1DFloat(TestCase): def setUp(self): TestCase.setUp(self) self.data = np.arange(13).astype('f') self.dset = self.f.create_dataset('x', data=self.data) def test_ndim(self): """ Verify number of dimensions """ self.assertEquals(self.dset.ndim, 1) def test_shape(self): """ Verify shape """ self.assertEquals(self.dset.shape, (13,)) def test_ellipsis(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[...]) def test_tuple(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[()]) def test_slice_simple(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[0:4]) def test_slice_zerosize(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[4:4]) def test_slice_strides(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[1:7:3]) def test_slice_negindexes(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[-8:-2:3]) def test_slice_stop_less_than_start(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[7:5]) def test_slice_outofrange(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[100:400:3]) def test_slice_backwards(self): """ we disallow negative steps """ with self.assertRaises(ValueError): self.dset[::-1] def test_slice_zerostride(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[::0]) def test_index_simple(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[3]) def test_index_neg(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[-4]) # FIXME: NumPy permits this... it adds a new axis in front def test_index_none(self): with self.assertRaises(TypeError): self.dset[None] # FIXME: NumPy raises IndexError # Also this currently raises UnboundLocalError. :( @ut.expectedFailure def test_index_illegal(self): """ Illegal slicing argument """ with self.assertRaises(TypeError): self.dset[{}] # FIXME: NumPy raises IndexError def test_index_outofrange(self): with self.assertRaises(ValueError): self.dset[100] def test_indexlist_simple(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[[1,2,5]]) def test_indexlist_single_index_ellipsis(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[[0], ...]) def test_indexlist_numpyarray_single_index_ellipsis(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[np.array([0]), ...]) def test_indexlist_numpyarray_ellipsis(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[np.array([1, 2, 5]), ...]) # Another UnboundLocalError @ut.expectedFailure def test_indexlist_empty(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[[]]) # FIXME: NumPy has IndexError def test_indexlist_outofrange(self): with self.assertRaises(ValueError): self.dset[[100]] def test_indexlist_nonmonotonic(self): """ we require index list values to be strictly increasing """ with self.assertRaises(TypeError): self.dset[[1,3,2]] def test_indexlist_repeated(self): """ we forbid repeated index values """ with self.assertRaises(TypeError): self.dset[[1,1,2]] def test_mask_true(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[self.data > -100]) def test_mask_false(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[self.data > 100]) def test_mask_partial(self): self.assertNumpyBehavior(self.dset, self.data, np.s_[self.data > 5]) def test_mask_wrongsize(self): """ we require the boolean mask shape to match exactly """ with self.assertRaises(TypeError): self.dset[np.ones((2,), dtype='bool')] def test_fieldnames(self): """ field name -> ValueError (no fields) """ with self.assertRaises(ValueError): self.dset['field'] @ut.skipUnless(h5py.version.hdf5_version_tuple >= (1, 8, 7), 'HDF5 1.8.7+ required') class Test2DZeroFloat(TestCase): def setUp(self): TestCase.setUp(self) self.data = np.ones((0,3), dtype='f') self.dset = self.f.create_dataset('x', data=self.data) def test_ndim(self): """ Verify number of dimensions """ self.assertEquals(self.dset.ndim, 2) def test_shape(self): """ Verify shape """ self.assertEquals(self.dset.shape, (0, 3)) @ut.expectedFailure def test_indexlist(self): """ see issue #473 """ self.assertNumpyBehavior(self.dset, self.data, np.s_[:,[0,1,2]]) class TestVeryLargeArray(TestCase): def setUp(self): TestCase.setUp(self) self.dset = self.f.create_dataset('x', shape=(2**15, 2**16)) @ut.skipIf(sys.maxsize < 2**31, 'Maximum integer size >= 2**31 required') def test_size(self): self.assertEqual(self.dset.size, 2**31)