|
|
- '''
- RFC 6979:
- Deterministic Usage of the Digital Signature Algorithm (DSA) and
- Elliptic Curve Digital Signature Algorithm (ECDSA)
-
- http://tools.ietf.org/html/rfc6979
-
- Many thanks to Coda Hale for his implementation in Go language:
- https://github.com/codahale/rfc6979
- '''
-
- import hmac
- from binascii import hexlify
- from .util import number_to_string, number_to_string_crop
- from .six import b
-
- try:
- bin(0)
- except NameError:
- binmap = {"0": "0000", "1": "0001", "2": "0010", "3": "0011",
- "4": "0100", "5": "0101", "6": "0110", "7": "0111",
- "8": "1000", "9": "1001", "a": "1010", "b": "1011",
- "c": "1100", "d": "1101", "e": "1110", "f": "1111"}
- def bin(value): # for python2.5
- v = "".join(binmap[x] for x in "%x"%abs(value)).lstrip("0")
- if value < 0:
- return "-0b" + v
- return "0b" + v
-
- def bit_length(num):
- # http://docs.python.org/dev/library/stdtypes.html#int.bit_length
- s = bin(num) # binary representation: bin(-37) --> '-0b100101'
- s = s.lstrip('-0b') # remove leading zeros and minus sign
- return len(s) # len('100101') --> 6
-
- def bits2int(data, qlen):
- x = int(hexlify(data), 16)
- l = len(data) * 8
-
- if l > qlen:
- return x >> (l-qlen)
- return x
-
- def bits2octets(data, order):
- z1 = bits2int(data, bit_length(order))
- z2 = z1 - order
-
- if z2 < 0:
- z2 = z1
-
- return number_to_string_crop(z2, order)
-
- # https://tools.ietf.org/html/rfc6979#section-3.2
- def generate_k(order, secexp, hash_func, data):
- '''
- order - order of the DSA generator used in the signature
- secexp - secure exponent (private key) in numeric form
- hash_func - reference to the same hash function used for generating hash
- data - hash in binary form of the signing data
- '''
-
- qlen = bit_length(order)
- holen = hash_func().digest_size
- rolen = (qlen + 7) / 8
- bx = number_to_string(secexp, order) + bits2octets(data, order)
-
- # Step B
- v = b('\x01') * holen
-
- # Step C
- k = b('\x00') * holen
-
- # Step D
-
- k = hmac.new(k, v+b('\x00')+bx, hash_func).digest()
-
- # Step E
- v = hmac.new(k, v, hash_func).digest()
-
- # Step F
- k = hmac.new(k, v+b('\x01')+bx, hash_func).digest()
-
- # Step G
- v = hmac.new(k, v, hash_func).digest()
-
- # Step H
- while True:
- # Step H1
- t = b('')
-
- # Step H2
- while len(t) < rolen:
- v = hmac.new(k, v, hash_func).digest()
- t += v
-
- # Step H3
- secret = bits2int(t, qlen)
-
- if secret >= 1 and secret < order:
- return secret
-
- k = hmac.new(k, v+b('\x00'), hash_func).digest()
- v = hmac.new(k, v, hash_func).digest()
|