laywerrobot/lib/python3.6/site-packages/tensorflow/python/training/rmsprop.py
2020-08-27 21:55:39 +02:00

254 lines
10 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""One-line documentation for rmsprop module.
rmsprop algorithm [tieleman2012rmsprop]
A detailed description of rmsprop.
- maintain a moving (discounted) average of the square of gradients
- divide gradient by the root of this average
mean_square = decay * mean_square{t-1} + (1-decay) * gradient ** 2
mom = momentum * mom{t-1} + learning_rate * g_t / sqrt(mean_square + epsilon)
delta = - mom
This implementation of RMSProp uses plain momentum, not Nesterov momentum.
The centered version additionally maintains a moving (discounted) average of the
gradients, and uses that average to estimate the variance:
mean_grad = decay * mean_square{t-1} + (1-decay) * gradient
mean_square = decay * mean_square{t-1} + (1-decay) * gradient ** 2
mom = momentum * mom{t-1} + learning_rate * g_t /
sqrt(mean_square - mean_grad**2 + epsilon)
delta = - mom
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.training import optimizer
from tensorflow.python.training import training_ops
from tensorflow.python.util.tf_export import tf_export
@tf_export("train.RMSPropOptimizer")
class RMSPropOptimizer(optimizer.Optimizer):
"""Optimizer that implements the RMSProp algorithm.
See the
[paper](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf).
"""
def __init__(self,
learning_rate,
decay=0.9,
momentum=0.0,
epsilon=1e-10,
use_locking=False,
centered=False,
name="RMSProp"):
"""Construct a new RMSProp optimizer.
Note that in the dense implementation of this algorithm, variables and their
corresponding accumulators (momentum, gradient moving average, square
gradient moving average) will be updated even if the gradient is zero
(i.e. accumulators will decay, momentum will be applied). The sparse
implementation (used when the gradient is an `IndexedSlices` object,
typically because of `tf.gather` or an embedding lookup in the forward pass)
will not update variable slices or their accumulators unless those slices
were used in the forward pass (nor is there an "eventual" correction to
account for these omitted updates). This leads to more efficient updates for
large embedding lookup tables (where most of the slices are not accessed in
a particular graph execution), but differs from the published algorithm.
Args:
learning_rate: A Tensor or a floating point value. The learning rate.
decay: Discounting factor for the history/coming gradient
momentum: A scalar tensor.
epsilon: Small value to avoid zero denominator.
use_locking: If True use locks for update operation.
centered: If True, gradients are normalized by the estimated variance of
the gradient; if False, by the uncentered second moment. Setting this to
True may help with training, but is slightly more expensive in terms of
computation and memory. Defaults to False.
name: Optional name prefix for the operations created when applying
gradients. Defaults to "RMSProp".
@compatibility(eager)
When eager execution is enabled, `learning_rate`, `decay`, `momentum`, and
`epsilon` can each be a callable that takes no arguments and returns the
actual value to use. This can be useful for changing these values across
different invocations of optimizer functions.
@end_compatibility
"""
super(RMSPropOptimizer, self).__init__(use_locking, name)
self._learning_rate = learning_rate
self._decay = decay
self._momentum = momentum
self._epsilon = epsilon
self._centered = centered
# Tensors for learning rate and momentum. Created in _prepare.
self._learning_rate_tensor = None
self._decay_tensor = None
self._momentum_tensor = None
self._epsilon_tensor = None
def _create_slots(self, var_list):
for v in var_list:
if v.get_shape().is_fully_defined():
init_rms = init_ops.ones_initializer(dtype=v.dtype.base_dtype)
else:
init_rms = array_ops.ones_like(v)
self._get_or_make_slot_with_initializer(v, init_rms, v.get_shape(),
v.dtype.base_dtype, "rms",
self._name)
if self._centered:
self._zeros_slot(v, "mg", self._name)
self._zeros_slot(v, "momentum", self._name)
def _prepare(self):
lr = self._call_if_callable(self._learning_rate)
decay = self._call_if_callable(self._decay)
momentum = self._call_if_callable(self._momentum)
epsilon = self._call_if_callable(self._epsilon)
self._learning_rate_tensor = ops.convert_to_tensor(lr, name="learning_rate")
self._decay_tensor = ops.convert_to_tensor(decay, name="decay")
self._momentum_tensor = ops.convert_to_tensor(momentum, name="momentum")
self._epsilon_tensor = ops.convert_to_tensor(epsilon, name="epsilon")
def _apply_dense(self, grad, var):
rms = self.get_slot(var, "rms")
mom = self.get_slot(var, "momentum")
if self._centered:
mg = self.get_slot(var, "mg")
return training_ops.apply_centered_rms_prop(
var,
mg,
rms,
mom,
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
math_ops.cast(self._decay_tensor, var.dtype.base_dtype),
math_ops.cast(self._momentum_tensor, var.dtype.base_dtype),
math_ops.cast(self._epsilon_tensor, var.dtype.base_dtype),
grad,
use_locking=self._use_locking).op
else:
return training_ops.apply_rms_prop(
var,
rms,
mom,
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
math_ops.cast(self._decay_tensor, var.dtype.base_dtype),
math_ops.cast(self._momentum_tensor, var.dtype.base_dtype),
math_ops.cast(self._epsilon_tensor, var.dtype.base_dtype),
grad,
use_locking=self._use_locking).op
def _resource_apply_dense(self, grad, var):
rms = self.get_slot(var, "rms")
mom = self.get_slot(var, "momentum")
if self._centered:
mg = self.get_slot(var, "mg")
return training_ops.resource_apply_centered_rms_prop(
var.handle,
mg.handle,
rms.handle,
mom.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype),
math_ops.cast(self._decay_tensor, grad.dtype.base_dtype),
math_ops.cast(self._momentum_tensor, grad.dtype.base_dtype),
math_ops.cast(self._epsilon_tensor, grad.dtype.base_dtype),
grad,
use_locking=self._use_locking)
else:
return training_ops.resource_apply_rms_prop(
var.handle,
rms.handle,
mom.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype),
math_ops.cast(self._decay_tensor, grad.dtype.base_dtype),
math_ops.cast(self._momentum_tensor, grad.dtype.base_dtype),
math_ops.cast(self._epsilon_tensor, grad.dtype.base_dtype),
grad,
use_locking=self._use_locking)
def _apply_sparse(self, grad, var):
rms = self.get_slot(var, "rms")
mom = self.get_slot(var, "momentum")
if self._centered:
mg = self.get_slot(var, "mg")
return training_ops.sparse_apply_centered_rms_prop(
var,
mg,
rms,
mom,
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
math_ops.cast(self._decay_tensor, var.dtype.base_dtype),
math_ops.cast(self._momentum_tensor, var.dtype.base_dtype),
math_ops.cast(self._epsilon_tensor, var.dtype.base_dtype),
grad.values,
grad.indices,
use_locking=self._use_locking)
else:
return training_ops.sparse_apply_rms_prop(
var,
rms,
mom,
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
math_ops.cast(self._decay_tensor, var.dtype.base_dtype),
math_ops.cast(self._momentum_tensor, var.dtype.base_dtype),
math_ops.cast(self._epsilon_tensor, var.dtype.base_dtype),
grad.values,
grad.indices,
use_locking=self._use_locking)
def _resource_apply_sparse(self, grad, var, indices):
rms = self.get_slot(var, "rms")
mom = self.get_slot(var, "momentum")
if self._centered:
mg = self.get_slot(var, "mg")
return training_ops.resource_sparse_apply_centered_rms_prop(
var.handle,
mg.handle,
rms.handle,
mom.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype),
math_ops.cast(self._decay_tensor, grad.dtype),
math_ops.cast(self._momentum_tensor, grad.dtype),
math_ops.cast(self._epsilon_tensor, grad.dtype),
grad,
indices,
use_locking=self._use_locking)
else:
return training_ops.resource_sparse_apply_rms_prop(
var.handle,
rms.handle,
mom.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype),
math_ops.cast(self._decay_tensor, grad.dtype),
math_ops.cast(self._momentum_tensor, grad.dtype),
math_ops.cast(self._epsilon_tensor, grad.dtype),
grad,
indices,
use_locking=self._use_locking)