121 lines
5.2 KiB
Python
121 lines
5.2 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""ProximalAdagrad for TensorFlow."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.training import optimizer
|
|
from tensorflow.python.training import training_ops
|
|
from tensorflow.python.util.tf_export import tf_export
|
|
|
|
|
|
@tf_export("train.ProximalAdagradOptimizer")
|
|
class ProximalAdagradOptimizer(optimizer.Optimizer):
|
|
# pylint: disable=line-too-long
|
|
"""Optimizer that implements the Proximal Adagrad algorithm.
|
|
|
|
See this [paper](http://papers.nips.cc/paper/3793-efficient-learning-using-forward-backward-splitting.pdf).
|
|
"""
|
|
|
|
def __init__(self, learning_rate, initial_accumulator_value=0.1,
|
|
l1_regularization_strength=0.0, l2_regularization_strength=0.0,
|
|
use_locking=False, name="ProximalAdagrad"):
|
|
"""Construct a new ProximalAdagrad optimizer.
|
|
|
|
Args:
|
|
learning_rate: A `Tensor` or a floating point value. The learning rate.
|
|
initial_accumulator_value: A floating point value.
|
|
Starting value for the accumulators, must be positive.
|
|
l1_regularization_strength: A float value, must be greater than or
|
|
equal to zero.
|
|
l2_regularization_strength: A float value, must be greater than or
|
|
equal to zero.
|
|
use_locking: If `True` use locks for update operations.
|
|
name: Optional name prefix for the operations created when applying
|
|
gradients. Defaults to "Adagrad".
|
|
|
|
Raises:
|
|
ValueError: If the `initial_accumulator_value` is invalid.
|
|
"""
|
|
if initial_accumulator_value <= 0.0:
|
|
raise ValueError("initial_accumulator_value must be positive: %s" %
|
|
initial_accumulator_value)
|
|
super(ProximalAdagradOptimizer, self).__init__(use_locking, name)
|
|
self._learning_rate = learning_rate
|
|
self._initial_accumulator_value = initial_accumulator_value
|
|
self._l1_regularization_strength = l1_regularization_strength
|
|
self._l2_regularization_strength = l2_regularization_strength
|
|
# Created in Initialize.
|
|
self._l1_regularization_strength_tensor = None
|
|
self._l2_regularization_strength_tensor = None
|
|
self._learning_rate_tensor = None
|
|
|
|
def _create_slots(self, var_list):
|
|
for v in var_list:
|
|
with ops.colocate_with(v):
|
|
val = constant_op.constant(self._initial_accumulator_value,
|
|
shape=v.get_shape(),
|
|
dtype=v.dtype.base_dtype)
|
|
self._get_or_make_slot(v, val, "accumulator", self._name)
|
|
|
|
def _prepare(self):
|
|
self._learning_rate_tensor = ops.convert_to_tensor(self._learning_rate,
|
|
name="learning_rate")
|
|
self._l1_regularization_strength_tensor = ops.convert_to_tensor(
|
|
self._l1_regularization_strength,
|
|
name="l1_regularization_strength")
|
|
self._l2_regularization_strength_tensor = ops.convert_to_tensor(
|
|
self._l2_regularization_strength,
|
|
name="l2_regularization_strength")
|
|
|
|
def _apply_dense(self, grad, var):
|
|
acc = self.get_slot(var, "accumulator")
|
|
return training_ops.apply_proximal_adagrad(
|
|
var, acc, self._learning_rate_tensor,
|
|
self._l1_regularization_strength_tensor,
|
|
self._l2_regularization_strength_tensor,
|
|
grad, use_locking=self._use_locking)
|
|
|
|
def _resource_apply_dense(self, grad, var):
|
|
acc = self.get_slot(var, "accumulator")
|
|
return training_ops.resource_apply_proximal_adagrad(
|
|
var.handle, acc.handle, self._learning_rate_tensor,
|
|
self._l1_regularization_strength_tensor,
|
|
self._l2_regularization_strength_tensor,
|
|
grad, use_locking=self._use_locking)
|
|
|
|
def _apply_sparse(self, grad, var):
|
|
acc = self.get_slot(var, "accumulator")
|
|
return training_ops.sparse_apply_proximal_adagrad(
|
|
var, acc, self._learning_rate_tensor,
|
|
self._l1_regularization_strength_tensor,
|
|
self._l2_regularization_strength_tensor,
|
|
grad.values, grad.indices,
|
|
use_locking=self._use_locking)
|
|
|
|
def _resource_apply_sparse(self, grad, var, indices):
|
|
acc = self.get_slot(var, "accumulator")
|
|
return training_ops.resource_sparse_apply_proximal_adagrad(
|
|
var.handle, acc.handle,
|
|
math_ops.cast(self._learning_rate_tensor, grad.dtype),
|
|
math_ops.cast(self._l1_regularization_strength_tensor, grad.dtype),
|
|
math_ops.cast(self._l2_regularization_strength_tensor, grad.dtype),
|
|
grad, indices,
|
|
use_locking=self._use_locking)
|