laywerrobot/lib/python3.6/site-packages/tensorflow/python/ops/sets_impl.py
2020-08-27 21:55:39 +02:00

347 lines
11 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of tf.sets."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.ops import gen_set_ops
from tensorflow.python.util.tf_export import tf_export
_VALID_DTYPES = set([
dtypes.int8, dtypes.int16, dtypes.int32, dtypes.int64,
dtypes.uint8, dtypes.uint16, dtypes.string])
@tf_export("sets.set_size")
def set_size(a, validate_indices=True):
"""Compute number of unique elements along last dimension of `a`.
Args:
a: `SparseTensor`, with indices sorted in row-major order.
validate_indices: Whether to validate the order and range of sparse indices
in `a`.
Returns:
`int32` `Tensor` of set sizes. For `a` ranked `n`, this is a `Tensor` with
rank `n-1`, and the same 1st `n-1` dimensions as `a`. Each value is the
number of unique elements in the corresponding `[0...n-1]` dimension of `a`.
Raises:
TypeError: If `a` is an invalid types.
"""
a = sparse_tensor.convert_to_tensor_or_sparse_tensor(a, name="a")
if not isinstance(a, sparse_tensor.SparseTensor):
raise TypeError("Expected `SparseTensor`, got %s." % a)
if a.values.dtype.base_dtype not in _VALID_DTYPES:
raise TypeError("Invalid dtype %s." % a.values.dtype)
# pylint: disable=protected-access
return gen_set_ops.set_size(
a.indices, a.values, a.dense_shape, validate_indices)
ops.NotDifferentiable("SetSize")
ops.NotDifferentiable("DenseToDenseSetOperation")
ops.NotDifferentiable("DenseToSparseSetOperation")
ops.NotDifferentiable("SparseToSparseSetOperation")
def _convert_to_tensors_or_sparse_tensors(a, b):
"""Convert to tensor types, and flip order if necessary.
Args:
a: `Tensor` or `SparseTensor` of the same type as `b`.
b: `Tensor` or `SparseTensor` of the same type as `a`.
Returns:
Tuple of `(a, b, flipped)`, where `a` and `b` have been converted to
`Tensor` or `SparseTensor`, and `flipped` indicates whether the order has
been flipped to make it dense,sparse instead of sparse,dense (since the set
ops do not support the latter).
"""
a = sparse_tensor.convert_to_tensor_or_sparse_tensor(a, name="a")
if a.dtype.base_dtype not in _VALID_DTYPES:
raise TypeError("'a' invalid dtype %s." % a.dtype)
b = sparse_tensor.convert_to_tensor_or_sparse_tensor(b, name="b")
if b.dtype.base_dtype != a.dtype.base_dtype:
raise TypeError("Types don't match, %s vs %s." % (a.dtype, b.dtype))
if (isinstance(a, sparse_tensor.SparseTensor) and
not isinstance(b, sparse_tensor.SparseTensor)):
return b, a, True
return a, b, False
def _set_operation(a, b, set_operation, validate_indices=True):
"""Compute set operation of elements in last dimension of `a` and `b`.
All but the last dimension of `a` and `b` must match.
Args:
a: `Tensor` or `SparseTensor` of the same type as `b`. If sparse, indices
must be sorted in row-major order.
b: `Tensor` or `SparseTensor` of the same type as `a`. Must be
`SparseTensor` if `a` is `SparseTensor`. If sparse, indices must be
sorted in row-major order.
set_operation: String indicating set operation. See
SetOperationOp::SetOperationFromContext for valid values.
validate_indices: Whether to validate the order and range of sparse indices
in `a` and `b`.
Returns:
A `SparseTensor` with the same rank as `a` and `b`, and all but the last
dimension the same. Elements along the last dimension contain the results
of the set operation.
Raises:
TypeError: If inputs are invalid types.
ValueError: If `a` is sparse and `b` is dense.
"""
if isinstance(a, sparse_tensor.SparseTensor):
if isinstance(b, sparse_tensor.SparseTensor):
indices, values, shape = gen_set_ops.sparse_to_sparse_set_operation(
a.indices, a.values, a.dense_shape,
b.indices, b.values, b.dense_shape,
set_operation, validate_indices)
else:
raise ValueError("Sparse,Dense is not supported, but Dense,Sparse is. "
"Please flip the order of your inputs.")
elif isinstance(b, sparse_tensor.SparseTensor):
indices, values, shape = gen_set_ops.dense_to_sparse_set_operation(
a, b.indices, b.values, b.dense_shape, set_operation, validate_indices)
else:
indices, values, shape = gen_set_ops.dense_to_dense_set_operation(
a, b, set_operation, validate_indices)
return sparse_tensor.SparseTensor(indices, values, shape)
@tf_export("sets.set_intersection")
def set_intersection(a, b, validate_indices=True):
"""Compute set intersection of elements in last dimension of `a` and `b`.
All but the last dimension of `a` and `b` must match.
Example:
```python
import tensorflow as tf
import collections
# Represent the following array of sets as a sparse tensor:
# a = np.array([[{1, 2}, {3}], [{4}, {5, 6}]])
a = collections.OrderedDict([
((0, 0, 0), 1),
((0, 0, 1), 2),
((0, 1, 0), 3),
((1, 0, 0), 4),
((1, 1, 0), 5),
((1, 1, 1), 6),
])
a = tf.SparseTensor(list(a.keys()), list(a.values()), dense_shape=[2,2,2])
# b = np.array([[{1}, {}], [{4}, {5, 6, 7, 8}]])
b = collections.OrderedDict([
((0, 0, 0), 1),
((1, 0, 0), 4),
((1, 1, 0), 5),
((1, 1, 1), 6),
((1, 1, 2), 7),
((1, 1, 3), 8),
])
b = tf.SparseTensor(list(b.keys()), list(b.values()), dense_shape=[2, 2, 4])
# `tf.sets.set_intersection` is applied to each aligned pair of sets.
tf.sets.set_intersection(a, b)
# The result will be equivalent to either of:
#
# np.array([[{1}, {}], [{4}, {5, 6}]])
#
# collections.OrderedDict([
# ((0, 0, 0), 1),
# ((1, 0, 0), 4),
# ((1, 1, 0), 5),
# ((1, 1, 1), 6),
# ])
```
Args:
a: `Tensor` or `SparseTensor` of the same type as `b`. If sparse, indices
must be sorted in row-major order.
b: `Tensor` or `SparseTensor` of the same type as `a`. If sparse, indices
must be sorted in row-major order.
validate_indices: Whether to validate the order and range of sparse indices
in `a` and `b`.
Returns:
A `SparseTensor` whose shape is the same rank as `a` and `b`, and all but
the last dimension the same. Elements along the last dimension contain the
intersections.
"""
a, b, _ = _convert_to_tensors_or_sparse_tensors(a, b)
return _set_operation(a, b, "intersection", validate_indices)
@tf_export("sets.set_difference")
def set_difference(a, b, aminusb=True, validate_indices=True):
"""Compute set difference of elements in last dimension of `a` and `b`.
All but the last dimension of `a` and `b` must match.
Example:
```python
import tensorflow as tf
import collections
# Represent the following array of sets as a sparse tensor:
# a = np.array([[{1, 2}, {3}], [{4}, {5, 6}]])
a = collections.OrderedDict([
((0, 0, 0), 1),
((0, 0, 1), 2),
((0, 1, 0), 3),
((1, 0, 0), 4),
((1, 1, 0), 5),
((1, 1, 1), 6),
])
a = tf.SparseTensor(list(a.keys()), list(a.values()), dense_shape=[2, 2, 2])
# np.array([[{1, 3}, {2}], [{4, 5}, {5, 6, 7, 8}]])
b = collections.OrderedDict([
((0, 0, 0), 1),
((0, 0, 1), 3),
((0, 1, 0), 2),
((1, 0, 0), 4),
((1, 0, 1), 5),
((1, 1, 0), 5),
((1, 1, 1), 6),
((1, 1, 2), 7),
((1, 1, 3), 8),
])
b = tf.SparseTensor(list(b.keys()), list(b.values()), dense_shape=[2, 2, 4])
# `set_difference` is applied to each aligned pair of sets.
tf.sets.set_difference(a, b)
# The result will be equivalent to either of:
#
# np.array([[{2}, {3}], [{}, {}]])
#
# collections.OrderedDict([
# ((0, 0, 0), 2),
# ((0, 1, 0), 3),
# ])
```
Args:
a: `Tensor` or `SparseTensor` of the same type as `b`. If sparse, indices
must be sorted in row-major order.
b: `Tensor` or `SparseTensor` of the same type as `a`. If sparse, indices
must be sorted in row-major order.
aminusb: Whether to subtract `b` from `a`, vs vice versa.
validate_indices: Whether to validate the order and range of sparse indices
in `a` and `b`.
Returns:
A `SparseTensor` whose shape is the same rank as `a` and `b`, and all but
the last dimension the same. Elements along the last dimension contain the
differences.
"""
a, b, flipped = _convert_to_tensors_or_sparse_tensors(a, b)
if flipped:
aminusb = not aminusb
return _set_operation(a, b, "a-b" if aminusb else "b-a", validate_indices)
@tf_export("sets.set_union")
def set_union(a, b, validate_indices=True):
"""Compute set union of elements in last dimension of `a` and `b`.
All but the last dimension of `a` and `b` must match.
Example:
```python
import tensorflow as tf
import collections
# [[{1, 2}, {3}], [{4}, {5, 6}]]
a = collections.OrderedDict([
((0, 0, 0), 1),
((0, 0, 1), 2),
((0, 1, 0), 3),
((1, 0, 0), 4),
((1, 1, 0), 5),
((1, 1, 1), 6),
])
a = tf.SparseTensor(list(a.keys()), list(a.values()), dense_shape=[2, 2, 2])
# [[{1, 3}, {2}], [{4, 5}, {5, 6, 7, 8}]]
b = collections.OrderedDict([
((0, 0, 0), 1),
((0, 0, 1), 3),
((0, 1, 0), 2),
((1, 0, 0), 4),
((1, 0, 1), 5),
((1, 1, 0), 5),
((1, 1, 1), 6),
((1, 1, 2), 7),
((1, 1, 3), 8),
])
b = tf.SparseTensor(list(b.keys()), list(b.values()), dense_shape=[2, 2, 4])
# `set_union` is applied to each aligned pair of sets.
tf.sets.set_union(a, b)
# The result will be a equivalent to either of:
#
# np.array([[{1, 2, 3}, {2, 3}], [{4, 5}, {5, 6, 7, 8}]])
#
# collections.OrderedDict([
# ((0, 0, 0), 1),
# ((0, 0, 1), 2),
# ((0, 0, 2), 3),
# ((0, 1, 0), 2),
# ((0, 1, 1), 3),
# ((1, 0, 0), 4),
# ((1, 0, 1), 5),
# ((1, 1, 0), 5),
# ((1, 1, 1), 6),
# ((1, 1, 2), 7),
# ((1, 1, 3), 8),
# ])
```
Args:
a: `Tensor` or `SparseTensor` of the same type as `b`. If sparse, indices
must be sorted in row-major order.
b: `Tensor` or `SparseTensor` of the same type as `a`. If sparse, indices
must be sorted in row-major order.
validate_indices: Whether to validate the order and range of sparse indices
in `a` and `b`.
Returns:
A `SparseTensor` whose shape is the same rank as `a` and `b`, and all but
the last dimension the same. Elements along the last dimension contain the
unions.
"""
a, b, _ = _convert_to_tensors_or_sparse_tensors(a, b)
return _set_operation(a, b, "union", validate_indices)