laywerrobot/lib/python3.6/site-packages/tensorflow/python/keras/preprocessing/image.py
2020-08-27 21:55:39 +02:00

1599 lines
60 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=g-import-not-at-top
"""Fairly basic set of tools for real-time data augmentation on image data.
Can easily be extended to include new transformations,
new preprocessing methods, etc...
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import multiprocessing.pool
import os
import re
import threading
import numpy as np
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.utils.data_utils import Sequence
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util.tf_export import tf_export
try:
from scipy import linalg
import scipy.ndimage as ndi
except ImportError:
linalg = None
ndi = None
try:
from PIL import ImageEnhance
from PIL import Image as pil_image
except ImportError:
pil_image = None
if pil_image is not None:
_PIL_INTERPOLATION_METHODS = {
'nearest': pil_image.NEAREST,
'bilinear': pil_image.BILINEAR,
'bicubic': pil_image.BICUBIC,
}
# These methods were only introduced in version 3.4.0 (2016).
if hasattr(pil_image, 'HAMMING'):
_PIL_INTERPOLATION_METHODS['hamming'] = pil_image.HAMMING
if hasattr(pil_image, 'BOX'):
_PIL_INTERPOLATION_METHODS['box'] = pil_image.BOX
# This method is new in version 1.1.3 (2013).
if hasattr(pil_image, 'LANCZOS'):
_PIL_INTERPOLATION_METHODS['lanczos'] = pil_image.LANCZOS
@tf_export('keras.preprocessing.image.random_rotation')
def random_rotation(x,
rg,
row_axis=1,
col_axis=2,
channel_axis=0,
fill_mode='nearest',
cval=0.):
"""Performs a random rotation of a Numpy image tensor.
Arguments:
x: Input tensor. Must be 3D.
rg: Rotation range, in degrees.
row_axis: Index of axis for rows in the input tensor.
col_axis: Index of axis for columns in the input tensor.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
Returns:
Rotated Numpy image tensor.
"""
theta = np.deg2rad(np.random.uniform(-rg, rg))
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0], [0, 0, 1]])
h, w = x.shape[row_axis], x.shape[col_axis]
transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w)
x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval)
return x
@tf_export('keras.preprocessing.image.random_shift')
def random_shift(x,
wrg,
hrg,
row_axis=1,
col_axis=2,
channel_axis=0,
fill_mode='nearest',
cval=0.):
"""Performs a random spatial shift of a Numpy image tensor.
Arguments:
x: Input tensor. Must be 3D.
wrg: Width shift range, as a float fraction of the width.
hrg: Height shift range, as a float fraction of the height.
row_axis: Index of axis for rows in the input tensor.
col_axis: Index of axis for columns in the input tensor.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
Returns:
Shifted Numpy image tensor.
"""
h, w = x.shape[row_axis], x.shape[col_axis]
tx = np.random.uniform(-hrg, hrg) * h
ty = np.random.uniform(-wrg, wrg) * w
translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
transform_matrix = translation_matrix # no need to do offset
x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval)
return x
@tf_export('keras.preprocessing.image.random_shear')
def random_shear(x,
intensity,
row_axis=1,
col_axis=2,
channel_axis=0,
fill_mode='nearest',
cval=0.):
"""Performs a random spatial shear of a Numpy image tensor.
Arguments:
x: Input tensor. Must be 3D.
intensity: Transformation intensity in degrees.
row_axis: Index of axis for rows in the input tensor.
col_axis: Index of axis for columns in the input tensor.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
Returns:
Sheared Numpy image tensor.
"""
shear = np.deg2rad(np.random.uniform(-intensity, intensity))
shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0],
[0, 0, 1]])
h, w = x.shape[row_axis], x.shape[col_axis]
transform_matrix = transform_matrix_offset_center(shear_matrix, h, w)
x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval)
return x
@tf_export('keras.preprocessing.image.random_zoom')
def random_zoom(x,
zoom_range,
row_axis=1,
col_axis=2,
channel_axis=0,
fill_mode='nearest',
cval=0.):
"""Performs a random spatial zoom of a Numpy image tensor.
Arguments:
x: Input tensor. Must be 3D.
zoom_range: Tuple of floats; zoom range for width and height.
row_axis: Index of axis for rows in the input tensor.
col_axis: Index of axis for columns in the input tensor.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
Returns:
Zoomed Numpy image tensor.
Raises:
ValueError: if `zoom_range` isn't a tuple.
"""
if len(zoom_range) != 2:
raise ValueError('`zoom_range` should be a tuple or list of two floats. '
'Received arg: ', zoom_range)
if zoom_range[0] == 1 and zoom_range[1] == 1:
zx, zy = 1, 1
else:
zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2)
zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]])
h, w = x.shape[row_axis], x.shape[col_axis]
transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w)
x = apply_transform(x, transform_matrix, channel_axis, fill_mode, cval)
return x
@tf_export('keras.preprocessing.image.random_channel_shift')
def random_channel_shift(x, intensity, channel_axis=0):
"""Perform a random channel shift.
Arguments:
x: Input tensor. Must be 3D.
intensity: Transformation intensity.
channel_axis: Index of axis for channels in the input tensor.
Returns:
Numpy image tensor.
"""
x = np.rollaxis(x, channel_axis, 0)
min_x, max_x = np.min(x), np.max(x)
channel_images = [
np.clip(x_channel + np.random.uniform(-intensity, intensity), min_x,
max_x) for x_channel in x
]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_axis + 1)
return x
@tf_export('keras.preprocessing.image.random_brightness')
def random_brightness(x, brightness_range):
"""Performs a random adjustment of brightness of a Numpy image tensor.
Arguments:
x: Input tensor. Must be 3D.
brightness_range: Tuple of floats; range to pick a brightness value from.
Returns:
Brightness adjusted Numpy image tensor.
Raises:
ValueError: if `brightness_range` isn't a tuple.
"""
if len(brightness_range) != 2:
raise ValueError('`brightness_range should be tuple or list of two floats. '
'Received arg: ', brightness_range)
x = array_to_img(x)
x = ImageEnhance.Brightness(x)
u = np.random.uniform(brightness_range[0], brightness_range[1])
x = x.enhance(u)
x = img_to_array(x)
return x
def transform_matrix_offset_center(matrix, x, y):
o_x = float(x) / 2 + 0.5
o_y = float(y) / 2 + 0.5
offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]])
reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]])
transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix)
return transform_matrix
@tf_export('keras.preprocessing.image.apply_transform')
def apply_transform(x,
transform_matrix,
channel_axis=0,
fill_mode='nearest',
cval=0.):
"""Apply the image transformation specified by a matrix.
Arguments:
x: 2D numpy array, single image.
transform_matrix: Numpy array specifying the geometric transformation.
channel_axis: Index of axis for channels in the input tensor.
fill_mode: Points outside the boundaries of the input
are filled according to the given mode
(one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
of the input if `mode='constant'`.
Returns:
The transformed version of the input.
"""
x = np.rollaxis(x, channel_axis, 0)
final_affine_matrix = transform_matrix[:2, :2]
final_offset = transform_matrix[:2, 2]
channel_images = [
ndi.interpolation.affine_transform(
x_channel,
final_affine_matrix,
final_offset,
order=1,
mode=fill_mode,
cval=cval) for x_channel in x
]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_axis + 1)
return x
@tf_export('keras.preprocessing.image.flip_axis')
def flip_axis(x, axis):
x = np.asarray(x).swapaxes(axis, 0)
x = x[::-1, ...]
x = x.swapaxes(0, axis)
return x
@tf_export('keras.preprocessing.image.array_to_img')
def array_to_img(x, data_format=None, scale=True):
"""Converts a 3D Numpy array to a PIL Image instance.
Arguments:
x: Input Numpy array.
data_format: Image data format.
scale: Whether to rescale image values
to be within [0, 255].
Returns:
A PIL Image instance.
Raises:
ImportError: if PIL is not available.
ValueError: if invalid `x` or `data_format` is passed.
"""
if pil_image is None:
raise ImportError('Could not import PIL.Image. '
'The use of `array_to_img` requires PIL.')
x = np.asarray(x, dtype=K.floatx())
if x.ndim != 3:
raise ValueError('Expected image array to have rank 3 (single image). '
'Got array with shape:', x.shape)
if data_format is None:
data_format = K.image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Invalid data_format:', data_format)
# Original Numpy array x has format (height, width, channel)
# or (channel, height, width)
# but target PIL image has format (width, height, channel)
if data_format == 'channels_first':
x = x.transpose(1, 2, 0)
if scale:
x = x + max(-np.min(x), 0) # pylint: disable=g-no-augmented-assignment
x_max = np.max(x)
if x_max != 0:
x /= x_max
x *= 255
if x.shape[2] == 3:
# RGB
return pil_image.fromarray(x.astype('uint8'), 'RGB')
elif x.shape[2] == 1:
# grayscale
return pil_image.fromarray(x[:, :, 0].astype('uint8'), 'L')
else:
raise ValueError('Unsupported channel number: ', x.shape[2])
@tf_export('keras.preprocessing.image.img_to_array')
def img_to_array(img, data_format=None):
"""Converts a PIL Image instance to a Numpy array.
Arguments:
img: PIL Image instance.
data_format: Image data format.
Returns:
A 3D Numpy array.
Raises:
ValueError: if invalid `img` or `data_format` is passed.
"""
if data_format is None:
data_format = K.image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ', data_format)
# Numpy array x has format (height, width, channel)
# or (channel, height, width)
# but original PIL image has format (width, height, channel)
x = np.asarray(img, dtype=K.floatx())
if len(x.shape) == 3:
if data_format == 'channels_first':
x = x.transpose(2, 0, 1)
elif len(x.shape) == 2:
if data_format == 'channels_first':
x = x.reshape((1, x.shape[0], x.shape[1]))
else:
x = x.reshape((x.shape[0], x.shape[1], 1))
else:
raise ValueError('Unsupported image shape: ', x.shape)
return x
@tf_export('keras.preprocessing.image.load_img')
def load_img(path, grayscale=False, target_size=None, interpolation='nearest'):
"""Loads an image into PIL format.
Arguments:
path: Path to image file
grayscale: Boolean, whether to load the image as grayscale.
target_size: Either `None` (default to original size)
or tuple of ints `(img_height, img_width)`.
interpolation: Interpolation method used to resample the image if the
target size is different from that of the loaded image.
Supported methods are "nearest", "bilinear", and "bicubic".
If PIL version 1.1.3 or newer is installed, "lanczos" is also
supported. If PIL version 3.4.0 or newer is installed, "box" and
"hamming" are also supported. By default, "nearest" is used.
Returns:
A PIL Image instance.
Raises:
ImportError: if PIL is not available.
ValueError: if interpolation method is not supported.
"""
if pil_image is None:
raise ImportError('Could not import PIL.Image. '
'The use of `array_to_img` requires PIL.')
img = pil_image.open(path)
if grayscale:
if img.mode != 'L':
img = img.convert('L')
else:
if img.mode != 'RGB':
img = img.convert('RGB')
if target_size is not None:
width_height_tuple = (target_size[1], target_size[0])
if img.size != width_height_tuple:
if interpolation not in _PIL_INTERPOLATION_METHODS:
raise ValueError('Invalid interpolation method {} specified. Supported '
'methods are {}'.format(interpolation, ', '.join(
_PIL_INTERPOLATION_METHODS.keys())))
resample = _PIL_INTERPOLATION_METHODS[interpolation]
img = img.resize(width_height_tuple, resample)
return img
def list_pictures(directory, ext='jpg|jpeg|bmp|png|ppm'):
return [
os.path.join(root, f)
for root, _, files in os.walk(directory)
for f in files
if re.match(r'([\w]+\.(?:' + ext + '))', f)
]
@tf_export('keras.preprocessing.image.ImageDataGenerator')
class ImageDataGenerator(object):
"""Generates batches of tensor image data with real-time data augmentation.
The data will be looped over (in batches).
Arguments:
featurewise_center: boolean, set input mean to 0 over the dataset,
feature-wise.
samplewise_center: boolean, set each sample mean to 0.
featurewise_std_normalization: boolean, divide inputs by std
of the dataset, feature-wise.
samplewise_std_normalization: boolean, divide each input by its std.
zca_epsilon: epsilon for ZCA whitening. Default is 1e-6.
zca_whitening: boolean, apply ZCA whitening.
rotation_range: int, degree range for random rotations.
width_shift_range: float, 1-D array-like or int
float: fraction of total width, if < 1, or pixels if >= 1.
1-D array-like: random elements from the array.
int: integer number of pixels from interval
`(-width_shift_range, +width_shift_range)`
With `width_shift_range=2` possible values are integers [-1, 0, +1],
same as with `width_shift_range=[-1, 0, +1]`,
while with `width_shift_range=1.0` possible values are floats in
the interval [-1.0, +1.0).
shear_range: float, shear Intensity
(Shear angle in counter-clockwise direction in degrees)
zoom_range: float or [lower, upper], Range for random zoom.
If a float, `[lower, upper] = [1-zoom_range, 1+zoom_range]`.
channel_shift_range: float, range for random channel shifts.
fill_mode: One of {"constant", "nearest", "reflect" or "wrap"}.
Default is 'nearest'. Points outside the boundaries of the input
are filled according to the given mode:
'constant': kkkkkkkk|abcd|kkkkkkkk (cval=k)
'nearest': aaaaaaaa|abcd|dddddddd
'reflect': abcddcba|abcd|dcbaabcd
'wrap': abcdabcd|abcd|abcdabcd
cval: float or int, value used for points outside the boundaries
when `fill_mode = "constant"`.
horizontal_flip: boolean, randomly flip inputs horizontally.
vertical_flip: boolean, randomly flip inputs vertically.
rescale: rescaling factor. Defaults to None. If None or 0, no rescaling
is applied, otherwise we multiply the data by the value provided
(before applying any other transformation).
preprocessing_function: function that will be implied on each input.
The function will run after the image is resized and augmented.
The function should take one argument:
one image (Numpy tensor with rank 3),
and should output a Numpy tensor with the same shape.
data_format: One of {"channels_first", "channels_last"}.
"channels_last" mode means that the images should have shape
`(samples, height, width, channels)`,
"channels_first" mode means that the images should have shape
`(samples, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
validation_split: float, fraction of images reserved for validation
(strictly between 0 and 1).
Examples:
Example of using `.flow(x, y)`:
```python
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)
datagen = ImageDataGenerator(
featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True)
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(x_train)
# fits the model on batches with real-time data augmentation:
model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
steps_per_epoch=len(x_train) / 32, epochs=epochs)
# here's a more "manual" example
for e in range(epochs):
print('Epoch', e)
batches = 0
for x_batch, y_batch in datagen.flow(x_train, y_train, batch_size=32):
model.fit(x_batch, y_batch)
batches += 1
if batches >= len(x_train) / 32:
# we need to break the loop by hand because
# the generator loops indefinitely
break
```
Example of using `.flow_from_directory(directory)`:
```python
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'data/train',
target_size=(150, 150),
batch_size=32,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
'data/validation',
target_size=(150, 150),
batch_size=32,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50,
validation_data=validation_generator,
validation_steps=800)
```
Example of transforming images and masks together.
```python
# we create two instances with the same arguments
data_gen_args = dict(featurewise_center=True,
featurewise_std_normalization=True,
rotation_range=90.,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2)
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)
# Provide the same seed and keyword arguments to the fit and flow methods
seed = 1
image_datagen.fit(images, augment=True, seed=seed)
mask_datagen.fit(masks, augment=True, seed=seed)
image_generator = image_datagen.flow_from_directory(
'data/images',
class_mode=None,
seed=seed)
mask_generator = mask_datagen.flow_from_directory(
'data/masks',
class_mode=None,
seed=seed)
# combine generators into one which yields image and masks
train_generator = zip(image_generator, mask_generator)
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50)
```
"""
def __init__(self,
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
zca_epsilon=1e-6,
rotation_range=0.,
width_shift_range=0.,
height_shift_range=0.,
brightness_range=None,
shear_range=0.,
zoom_range=0.,
channel_shift_range=0.,
fill_mode='nearest',
cval=0.,
horizontal_flip=False,
vertical_flip=False,
rescale=None,
preprocessing_function=None,
data_format=None,
validation_split=0.0):
if data_format is None:
data_format = K.image_data_format()
self.featurewise_center = featurewise_center
self.samplewise_center = samplewise_center
self.featurewise_std_normalization = featurewise_std_normalization
self.samplewise_std_normalization = samplewise_std_normalization
self.zca_whitening = zca_whitening
self.zca_epsilon = zca_epsilon
self.rotation_range = rotation_range
self.width_shift_range = width_shift_range
self.height_shift_range = height_shift_range
self.brightness_range = brightness_range
self.shear_range = shear_range
self.zoom_range = zoom_range
self.channel_shift_range = channel_shift_range
self.fill_mode = fill_mode
self.cval = cval
self.horizontal_flip = horizontal_flip
self.vertical_flip = vertical_flip
self.rescale = rescale
self.preprocessing_function = preprocessing_function
if data_format not in {'channels_last', 'channels_first'}:
raise ValueError(
'`data_format` should be `"channels_last"` (channel after row and '
'column) or `"channels_first"` (channel before row and column). '
'Received arg: ', data_format)
self.data_format = data_format
if data_format == 'channels_first':
self.channel_axis = 1
self.row_axis = 2
self.col_axis = 3
if data_format == 'channels_last':
self.channel_axis = 3
self.row_axis = 1
self.col_axis = 2
if validation_split and not 0 < validation_split < 1:
raise ValueError('`validation_split` must be strictly between 0 and 1. '
'Received arg: ', validation_split)
self.validation_split = validation_split
self.mean = None
self.std = None
self.principal_components = None
if np.isscalar(zoom_range):
self.zoom_range = [1 - zoom_range, 1 + zoom_range]
elif len(zoom_range) == 2:
self.zoom_range = [zoom_range[0], zoom_range[1]]
else:
raise ValueError('`zoom_range` should be a float or '
'a tuple or list of two floats. '
'Received arg: ', zoom_range)
if zca_whitening:
if not featurewise_center:
self.featurewise_center = True
logging.warning('This ImageDataGenerator specifies '
'`zca_whitening`, which overrides '
'setting of `featurewise_center`.')
if featurewise_std_normalization:
self.featurewise_std_normalization = False
logging.warning('This ImageDataGenerator specifies '
'`zca_whitening` '
'which overrides setting of'
'`featurewise_std_normalization`.')
if featurewise_std_normalization:
if not featurewise_center:
self.featurewise_center = True
logging.warning('This ImageDataGenerator specifies '
'`featurewise_std_normalization`, '
'which overrides setting of '
'`featurewise_center`.')
if samplewise_std_normalization:
if not samplewise_center:
self.samplewise_center = True
logging.warning('This ImageDataGenerator specifies '
'`samplewise_std_normalization`, '
'which overrides setting of '
'`samplewise_center`.')
def flow(self,
x,
y=None,
batch_size=32,
shuffle=True,
seed=None,
save_to_dir=None,
save_prefix='',
save_format='png',
subset=None):
"""Generates batches of augmented/normalized data with given numpy arrays.
Arguments:
x: data. Should have rank 4.
In case of grayscale data, the channels axis should have value 1
and in case of RGB data, it should have value 3.
y: labels.
batch_size: int (default: 32).
shuffle: boolean (default: True).
seed: int (default: None).
save_to_dir: None or str (default: None).
This allows you to optionally specify a directory
to which to save the augmented pictures being generated
(useful for visualizing what you are doing).
save_prefix: str (default: `''`). Prefix to use for filenames of
saved pictures (only relevant if `save_to_dir` is set).
save_format: one of "png", "jpeg". Default: "png".
(only relevant if `save_to_dir` is set)
subset: Subset of data (`"training"` or `"validation"`) if
`validation_split` is set in `ImageDataGenerator`.
Returns:
An Iterator yielding tuples of `(x, y)` where `x` is a numpy array of
image data and `y` is a numpy array of corresponding labels.
"""
return NumpyArrayIterator(
x,
y,
self,
batch_size=batch_size,
shuffle=shuffle,
seed=seed,
data_format=self.data_format,
save_to_dir=save_to_dir,
save_prefix=save_prefix,
save_format=save_format,
subset=subset)
def flow_from_directory(self,
directory,
target_size=(256, 256),
color_mode='rgb',
classes=None,
class_mode='categorical',
batch_size=32,
shuffle=True,
seed=None,
save_to_dir=None,
save_prefix='',
save_format='png',
follow_links=False,
subset=None,
interpolation='nearest'):
"""Generates batches of augmented/normalized data given directory path.
Arguments:
directory: path to the target directory. It should contain one
subdirectory per class. Any PNG, JPG, BMP, PPM or TIF images
inside each of the subdirectories directory tree will be included
in the generator. See [this script]
(https://gist.github.com/fchollet/0830affa1f7f19fd47b06d4cf89ed44d)
for more details.
target_size: tuple of integers `(height, width)`, default: `(256,
256)`. The dimensions to which all images found will be resized.
color_mode: one of "grayscale", "rbg". Default: "rgb". Whether the
images will be converted to have 1 or 3 color channels.
classes: optional list of class subdirectories (e.g. `['dogs',
'cats']`). Default: None. If not provided, the list of classes
will be automatically inferred from the subdirectory
names/structure under `directory`, where each subdirectory will be
treated as a different class (and the order of the classes, which
will map to the label indices, will be alphanumeric). The
dictionary containing the mapping from class names to class
indices can be obtained via the attribute `class_indices`.
class_mode: one of "categorical", "binary", "sparse", "input" or
None. Default: "categorical". Determines the type of label arrays
that are returned: "categorical" will be 2D one-hot encoded
labels, "binary" will be 1D binary labels, "sparse" will be 1D
integer labels, "input" will be images identical to input images
(mainly used to work with autoencoders). If None, no labels are
returned (the generator will only yield batches of image data,
which is useful to use `model.predict_generator()`,
`model.evaluate_generator()`, etc.). Please note that in case of
class_mode None, the data still needs to reside in a subdirectory
of `directory` for it to work correctly.
batch_size: size of the batches of data (default: 32).
shuffle: whether to shuffle the data (default: True)
seed: optional random seed for shuffling and transformations.
save_to_dir: None or str (default: None). This allows you to
optionally specify a directory to which to save the augmented
pictures being generated (useful for visualizing what you are doing)
save_prefix: str. Prefix to use for filenames of saved pictures
(only relevant if `save_to_dir` is set).
save_format: one of "png", "jpeg" (only relevant if `save_to_dir` is
set). Default: "png".
follow_links: whether to follow symlinks inside class subdirectories
(default: False).
subset: Subset of data (`"training"` or `"validation"`) if
` validation_split` is set in `ImageDataGenerator`.
interpolation: Interpolation method used to resample the image if
the target size is different from that of the loaded image.
Supported methods are `"nearest"`, `"bilinear"`, and `"bicubic"`.
If PIL version 1.1.3 or newer is installed, `"lanczos"` is also
supported. If PIL version 3.4.0 or newer is installed, `"box"` and
`"hamming"` are also supported. By default, `"nearest"` is used.
Returns:
A DirectoryIterator yielding tuples of `(x, y)` where `x` is a
numpy array containing a batch of images with shape
`(batch_size, *target_size, channels)` and `y` is a numpy
array of corresponding labels.
"""
return DirectoryIterator(
directory,
self,
target_size=target_size,
color_mode=color_mode,
classes=classes,
class_mode=class_mode,
data_format=self.data_format,
batch_size=batch_size,
shuffle=shuffle,
seed=seed,
save_to_dir=save_to_dir,
save_prefix=save_prefix,
save_format=save_format,
follow_links=follow_links,
subset=subset,
interpolation=interpolation)
def standardize(self, x):
"""Apply the normalization configuration to a batch of inputs.
Arguments:
x: batch of inputs to be normalized.
Returns:
The inputs, normalized.
"""
if self.preprocessing_function:
x = self.preprocessing_function(x)
if self.rescale:
x *= self.rescale
if self.samplewise_center:
x -= np.mean(x, keepdims=True)
if self.samplewise_std_normalization:
x /= (np.std(x, keepdims=True) + K.epsilon())
if self.featurewise_center:
if self.mean is not None:
x -= self.mean
else:
logging.warning('This ImageDataGenerator specifies '
'`featurewise_center`, but it hasn\'t '
'been fit on any training data. Fit it '
'first by calling `.fit(numpy_data)`.')
if self.featurewise_std_normalization:
if self.std is not None:
x /= (self.std + K.epsilon())
else:
logging.warning('This ImageDataGenerator specifies '
'`featurewise_std_normalization`, but it hasn\'t '
'been fit on any training data. Fit it '
'first by calling `.fit(numpy_data)`.')
if self.zca_whitening:
if self.principal_components is not None:
flatx = np.reshape(x, (-1, np.prod(x.shape[-3:])))
whitex = np.dot(flatx, self.principal_components)
x = np.reshape(whitex, x.shape)
else:
logging.warning('This ImageDataGenerator specifies '
'`zca_whitening`, but it hasn\'t '
'been fit on any training data. Fit it '
'first by calling `.fit(numpy_data)`.')
return x
def random_transform(self, x, seed=None):
"""Randomly augment a single image tensor.
Arguments:
x: 3D tensor, single image.
seed: random seed.
Returns:
A randomly transformed version of the input (same shape).
Raises:
ImportError: if Scipy is not available.
"""
if ndi is None:
raise ImportError('Scipy is required for image transformations.')
# x is a single image, so it doesn't have image number at index 0
img_row_axis = self.row_axis - 1
img_col_axis = self.col_axis - 1
img_channel_axis = self.channel_axis - 1
if seed is not None:
np.random.seed(seed)
# use composition of homographies
# to generate final transform that needs to be applied
if self.rotation_range:
theta = np.deg2rad(
np.random.uniform(-self.rotation_range, self.rotation_range))
else:
theta = 0
if self.height_shift_range:
try: # 1-D array-like or int
tx = np.random.choice(self.height_shift_range)
tx *= np.random.choice([-1, 1])
except ValueError: # floating point
tx = np.random.uniform(-self.height_shift_range,
self.height_shift_range)
if np.max(self.height_shift_range) < 1:
tx *= x.shape[img_row_axis]
else:
tx = 0
if self.width_shift_range:
try: # 1-D array-like or int
ty = np.random.choice(self.width_shift_range)
ty *= np.random.choice([-1, 1])
except ValueError: # floating point
ty = np.random.uniform(-self.width_shift_range, self.width_shift_range)
if np.max(self.width_shift_range) < 1:
ty *= x.shape[img_col_axis]
else:
ty = 0
if self.shear_range:
shear = np.deg2rad(np.random.uniform(-self.shear_range, self.shear_range))
else:
shear = 0
if self.zoom_range[0] == 1 and self.zoom_range[1] == 1:
zx, zy = 1, 1
else:
zx, zy = np.random.uniform(self.zoom_range[0], self.zoom_range[1], 2)
transform_matrix = None
if theta != 0:
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta),
np.cos(theta), 0], [0, 0, 1]])
transform_matrix = rotation_matrix
if tx != 0 or ty != 0:
shift_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
transform_matrix = shift_matrix if transform_matrix is None else np.dot(
transform_matrix, shift_matrix)
if shear != 0:
shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0],
[0, 0, 1]])
transform_matrix = shear_matrix if transform_matrix is None else np.dot(
transform_matrix, shear_matrix)
if zx != 1 or zy != 1:
zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]])
transform_matrix = zoom_matrix if transform_matrix is None else np.dot(
transform_matrix, zoom_matrix)
if transform_matrix is not None:
h, w = x.shape[img_row_axis], x.shape[img_col_axis]
transform_matrix = transform_matrix_offset_center(transform_matrix, h, w)
x = apply_transform(
x,
transform_matrix,
img_channel_axis,
fill_mode=self.fill_mode,
cval=self.cval)
if self.channel_shift_range != 0:
x = random_channel_shift(x, self.channel_shift_range, img_channel_axis)
if self.horizontal_flip:
if np.random.random() < 0.5:
x = flip_axis(x, img_col_axis)
if self.vertical_flip:
if np.random.random() < 0.5:
x = flip_axis(x, img_row_axis)
if self.brightness_range is not None:
x = random_brightness(x, self.brightness_range)
return x
def fit(self, x, augment=False, rounds=1, seed=None):
"""Computes the internal data statistics based on an array of sample data.
These are statistics related to the data-dependent transformations.
Only required if featurewise_center or featurewise_std_normalization or
zca_whitening.
Arguments:
x: sample data. Should have rank 4.
In case of grayscale data, the channels axis should have value 1
and in case of RGB data, it should have value 3.
augment: Boolean (default: False). Whether to fit on randomly
augmented samples.
rounds: int (default: 1). If augment, how many augmentation passes
over the data to use.
seed: int (default: None). Random seed.
Raises:
ValueError: If input rank is not 4.
ImportError: If scipy is not imported.
"""
x = np.asarray(x, dtype=K.floatx())
if x.ndim != 4:
raise ValueError('Input to `.fit()` should have rank 4. '
'Got array with shape: ' + str(x.shape))
if x.shape[self.channel_axis] not in {1, 3, 4}:
logging.warning(
'Expected input to be images (as Numpy array) '
'following the data format convention "' + self.data_format + '" '
'(channels on axis ' + str(self.channel_axis) + '), i.e. expected '
'either 1, 3 or 4 channels on axis ' + str(self.channel_axis) + '. '
'However, it was passed an array with shape ' + str(x.shape) + ' (' +
str(x.shape[self.channel_axis]) + ' channels).')
if seed is not None:
np.random.seed(seed)
x = np.copy(x)
if augment:
ax = np.zeros(
tuple([rounds * x.shape[0]] + list(x.shape)[1:]), dtype=K.floatx())
for r in range(rounds):
for i in range(x.shape[0]):
ax[i + r * x.shape[0]] = self.random_transform(x[i])
x = ax
if self.featurewise_center:
self.mean = np.mean(x, axis=(0, self.row_axis, self.col_axis))
broadcast_shape = [1, 1, 1]
broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis]
self.mean = np.reshape(self.mean, broadcast_shape)
x -= self.mean
if self.featurewise_std_normalization:
self.std = np.std(x, axis=(0, self.row_axis, self.col_axis))
broadcast_shape = [1, 1, 1]
broadcast_shape[self.channel_axis - 1] = x.shape[self.channel_axis]
self.std = np.reshape(self.std, broadcast_shape)
x /= (self.std + K.epsilon())
if self.zca_whitening:
if linalg is None:
raise ImportError('Scipy is required for zca_whitening.')
flat_x = np.reshape(x, (x.shape[0], x.shape[1] * x.shape[2] * x.shape[3]))
sigma = np.dot(flat_x.T, flat_x) / flat_x.shape[0]
u, s, _ = linalg.svd(sigma)
s_inv = 1. / np.sqrt(s[np.newaxis] + self.zca_epsilon)
self.principal_components = (u * s_inv).dot(u.T)
@tf_export('keras.preprocessing.image.Iterator')
class Iterator(Sequence):
"""Base class for image data iterators.
Every `Iterator` must implement the `_get_batches_of_transformed_samples`
method.
Arguments:
n: Integer, total number of samples in the dataset to loop over.
batch_size: Integer, size of a batch.
shuffle: Boolean, whether to shuffle the data between epochs.
seed: Random seeding for data shuffling.
"""
def __init__(self, n, batch_size, shuffle, seed):
self.n = n
self.batch_size = batch_size
self.seed = seed
self.shuffle = shuffle
self.batch_index = 0
self.total_batches_seen = 0
self.lock = threading.Lock()
self.index_array = None
self.index_generator = self._flow_index()
def _set_index_array(self):
self.index_array = np.arange(self.n)
if self.shuffle:
self.index_array = np.random.permutation(self.n)
def __getitem__(self, idx):
if idx >= len(self):
raise ValueError('Asked to retrieve element {idx}, '
'but the Sequence '
'has length {length}'.format(idx=idx, length=len(self)))
if self.seed is not None:
np.random.seed(self.seed + self.total_batches_seen)
self.total_batches_seen += 1
if self.index_array is None:
self._set_index_array()
index_array = self.index_array[self.batch_size * idx:self.batch_size * (
idx + 1)]
return self._get_batches_of_transformed_samples(index_array)
def __len__(self):
return (self.n + self.batch_size - 1) // self.batch_size # round up
def on_epoch_end(self):
self._set_index_array()
def reset(self):
self.batch_index = 0
def _flow_index(self):
# Ensure self.batch_index is 0.
self.reset()
while 1:
if self.seed is not None:
np.random.seed(self.seed + self.total_batches_seen)
if self.batch_index == 0:
self._set_index_array()
current_index = (self.batch_index * self.batch_size) % self.n
if self.n > current_index + self.batch_size:
self.batch_index += 1
else:
self.batch_index = 0
self.total_batches_seen += 1
yield self.index_array[current_index:current_index + self.batch_size]
def __iter__(self): # pylint: disable=non-iterator-returned
# Needed if we want to do something like:
# for x, y in data_gen.flow(...):
return self
def __next__(self, *args, **kwargs):
return self.next(*args, **kwargs)
def _get_batches_of_transformed_samples(self, index_array):
"""Gets a batch of transformed samples.
Arguments:
index_array: array of sample indices to include in batch.
Returns:
A batch of transformed samples.
"""
raise NotImplementedError
@tf_export('keras.preprocessing.image.NumpyArrayIterator')
class NumpyArrayIterator(Iterator):
"""Iterator yielding data from a Numpy array.
Arguments:
x: Numpy array of input data.
y: Numpy array of targets data.
image_data_generator: Instance of `ImageDataGenerator`
to use for random transformations and normalization.
batch_size: Integer, size of a batch.
shuffle: Boolean, whether to shuffle the data between epochs.
seed: Random seed for data shuffling.
data_format: String, one of `channels_first`, `channels_last`.
save_to_dir: Optional directory where to save the pictures
being yielded, in a viewable format. This is useful
for visualizing the random transformations being
applied, for debugging purposes.
save_prefix: String prefix to use for saving sample
images (if `save_to_dir` is set).
save_format: Format to use for saving sample images
(if `save_to_dir` is set).
subset: Subset of data (`"training"` or `"validation"`) if
validation_split is set in ImageDataGenerator.
"""
def __init__(self,
x,
y,
image_data_generator,
batch_size=32,
shuffle=False,
seed=None,
data_format=None,
save_to_dir=None,
save_prefix='',
save_format='png',
subset=None):
if y is not None and len(x) != len(y):
raise ValueError('`x` (images tensor) and `y` (labels) '
'should have the same length. '
'Found: x.shape = %s, y.shape = %s' %
(np.asarray(x).shape, np.asarray(y).shape))
if subset is not None:
if subset not in {'training', 'validation'}:
raise ValueError('Invalid subset name:', subset,
'; expected "training" or "validation".')
split_idx = int(len(x) * image_data_generator.validation_split)
if subset == 'validation':
x = x[:split_idx]
if y is not None:
y = y[:split_idx]
else:
x = x[split_idx:]
if y is not None:
y = y[split_idx:]
if data_format is None:
data_format = K.image_data_format()
self.x = np.asarray(x, dtype=K.floatx())
if self.x.ndim != 4:
raise ValueError('Input data in `NumpyArrayIterator` '
'should have rank 4. You passed an array '
'with shape', self.x.shape)
channels_axis = 3 if data_format == 'channels_last' else 1
if self.x.shape[channels_axis] not in {1, 3, 4}:
logging.warning(
'NumpyArrayIterator is set to use the '
'data format convention "' + data_format + '" '
'(channels on axis ' + str(channels_axis) + '), i.e. expected '
'either 1, 3 or 4 channels on axis ' + str(channels_axis) + '. '
'However, it was passed an array with shape ' + str(self.x.shape) +
' (' + str(self.x.shape[channels_axis]) + ' channels).')
if y is not None:
self.y = np.asarray(y)
else:
self.y = None
self.image_data_generator = image_data_generator
self.data_format = data_format
self.save_to_dir = save_to_dir
self.save_prefix = save_prefix
self.save_format = save_format
super(NumpyArrayIterator, self).__init__(x.shape[0], batch_size, shuffle,
seed)
def _get_batches_of_transformed_samples(self, index_array):
batch_x = np.zeros(
tuple([len(index_array)] + list(self.x.shape)[1:]), dtype=K.floatx())
for i, j in enumerate(index_array):
x = self.x[j]
x = self.image_data_generator.random_transform(x.astype(K.floatx()))
x = self.image_data_generator.standardize(x)
batch_x[i] = x
if self.save_to_dir:
for i, j in enumerate(index_array):
img = array_to_img(batch_x[i], self.data_format, scale=True)
fname = '{prefix}_{index}_{hash}.{format}'.format(
prefix=self.save_prefix,
index=j,
hash=np.random.randint(1e4),
format=self.save_format)
img.save(os.path.join(self.save_to_dir, fname))
if self.y is None:
return batch_x
batch_y = self.y[index_array]
return batch_x, batch_y
def next(self):
"""For python 2.x.
Returns:
The next batch.
"""
# Keeps under lock only the mechanism which advances
# the indexing of each batch.
with self.lock:
index_array = next(self.index_generator)
# The transformation of images is not under thread lock
# so it can be done in parallel
return self._get_batches_of_transformed_samples(index_array)
def _iter_valid_files(directory, white_list_formats, follow_links):
"""Count files with extension in `white_list_formats` contained in directory.
Arguments:
directory: absolute path to the directory
containing files to be counted
white_list_formats: set of strings containing allowed extensions for
the files to be counted.
follow_links: boolean.
Yields:
tuple of (root, filename) with extension in `white_list_formats`.
"""
def _recursive_list(subpath):
return sorted(
os.walk(subpath, followlinks=follow_links), key=lambda x: x[0])
for root, _, files in _recursive_list(directory):
for fname in sorted(files):
for extension in white_list_formats:
if fname.lower().endswith('.tiff'):
logging.warning(
'Using \'.tiff\' files with multiple bands will cause '
'distortion. Please verify your output.')
if fname.lower().endswith('.' + extension):
yield root, fname
def _count_valid_files_in_directory(directory, white_list_formats, split,
follow_links):
"""Count files with extension in `white_list_formats` contained in directory.
Arguments:
directory: absolute path to the directory
containing files to be counted
white_list_formats: set of strings containing allowed extensions for
the files to be counted.
split: tuple of floats (e.g. `(0.2, 0.6)`) to only take into
account a certain fraction of files in each directory.
E.g.: `segment=(0.6, 1.0)` would only account for last 40 percent
of images in each directory.
follow_links: boolean.
Returns:
the count of files with extension in `white_list_formats` contained in
the directory.
"""
num_files = len(
list(_iter_valid_files(directory, white_list_formats, follow_links)))
if split:
start, stop = int(split[0] * num_files), int(split[1] * num_files)
else:
start, stop = 0, num_files
return stop - start
def _list_valid_filenames_in_directory(directory, white_list_formats, split,
class_indices, follow_links):
"""List paths of files in `subdir` with extensions in `white_list_formats`.
Arguments:
directory: absolute path to a directory containing the files to list.
The directory name is used as class label and must be a key of
`class_indices`.
white_list_formats: set of strings containing allowed extensions for
the files to be counted.
split: tuple of floats (e.g. `(0.2, 0.6)`) to only take into
account a certain fraction of files in each directory.
E.g.: `segment=(0.6, 1.0)` would only account for last 40 percent
of images in each directory.
class_indices: dictionary mapping a class name to its index.
follow_links: boolean.
Returns:
classes: a list of class indices
filenames: the path of valid files in `directory`, relative from
`directory`'s parent (e.g., if `directory` is "dataset/class1",
the filenames will be ["class1/file1.jpg", "class1/file2.jpg", ...]).
"""
dirname = os.path.basename(directory)
if split:
num_files = len(
list(_iter_valid_files(directory, white_list_formats, follow_links)))
start, stop = int(split[0] * num_files), int(split[1] * num_files)
valid_files = list(
_iter_valid_files(directory, white_list_formats,
follow_links))[start:stop]
else:
valid_files = _iter_valid_files(directory, white_list_formats, follow_links)
classes = []
filenames = []
for root, fname in valid_files:
classes.append(class_indices[dirname])
absolute_path = os.path.join(root, fname)
relative_path = os.path.join(dirname,
os.path.relpath(absolute_path, directory))
filenames.append(relative_path)
return classes, filenames
@tf_export('keras.preprocessing.image.DirectoryIterator')
class DirectoryIterator(Iterator):
"""Iterator capable of reading images from a directory on disk.
Arguments:
directory: Path to the directory to read images from.
Each subdirectory in this directory will be
considered to contain images from one class,
or alternatively you could specify class subdirectories
via the `classes` argument.
image_data_generator: Instance of `ImageDataGenerator`
to use for random transformations and normalization.
target_size: tuple of integers, dimensions to resize input images to.
color_mode: One of `"rgb"`, `"grayscale"`. Color mode to read images.
classes: Optional list of strings, names of subdirectories
containing images from each class (e.g. `["dogs", "cats"]`).
It will be computed automatically if not set.
class_mode: Mode for yielding the targets:
`"binary"`: binary targets (if there are only two classes),
`"categorical"`: categorical targets,
`"sparse"`: integer targets,
`"input"`: targets are images identical to input images (mainly
used to work with autoencoders),
`None`: no targets get yielded (only input images are yielded).
batch_size: Integer, size of a batch.
shuffle: Boolean, whether to shuffle the data between epochs.
seed: Random seed for data shuffling.
data_format: String, one of `channels_first`, `channels_last`.
save_to_dir: Optional directory where to save the pictures
being yielded, in a viewable format. This is useful
for visualizing the random transformations being
applied, for debugging purposes.
save_prefix: String prefix to use for saving sample
images (if `save_to_dir` is set).
save_format: Format to use for saving sample images
(if `save_to_dir` is set).
subset: Subset of data (`"training"` or `"validation"`) if
validation_split is set in ImageDataGenerator.
interpolation: Interpolation method used to resample the image if the
target size is different from that of the loaded image.
Supported methods are "nearest", "bilinear", and "bicubic".
If PIL version 1.1.3 or newer is installed, "lanczos" is also
supported. If PIL version 3.4.0 or newer is installed, "box" and
"hamming" are also supported. By default, "nearest" is used.
"""
def __init__(self,
directory,
image_data_generator,
target_size=(256, 256),
color_mode='rgb',
classes=None,
class_mode='categorical',
batch_size=32,
shuffle=True,
seed=None,
data_format=None,
save_to_dir=None,
save_prefix='',
save_format='png',
follow_links=False,
subset=None,
interpolation='nearest'):
if data_format is None:
data_format = K.image_data_format()
self.directory = directory
self.image_data_generator = image_data_generator
self.target_size = tuple(target_size)
if color_mode not in {'rgb', 'grayscale'}:
raise ValueError('Invalid color mode:', color_mode,
'; expected "rgb" or "grayscale".')
self.color_mode = color_mode
self.data_format = data_format
if self.color_mode == 'rgb':
if self.data_format == 'channels_last':
self.image_shape = self.target_size + (3,)
else:
self.image_shape = (3,) + self.target_size
else:
if self.data_format == 'channels_last':
self.image_shape = self.target_size + (1,)
else:
self.image_shape = (1,) + self.target_size
self.classes = classes
if class_mode not in {'categorical', 'binary', 'sparse', 'input', None}:
raise ValueError('Invalid class_mode:', class_mode,
'; expected one of "categorical", '
'"binary", "sparse", "input"'
' or None.')
self.class_mode = class_mode
self.save_to_dir = save_to_dir
self.save_prefix = save_prefix
self.save_format = save_format
self.interpolation = interpolation
if subset is not None:
validation_split = self.image_data_generator.validation_split
if subset == 'validation':
split = (0, validation_split)
elif subset == 'training':
split = (validation_split, 1)
else:
raise ValueError('Invalid subset name: ', subset,
'; expected "training" or "validation"')
else:
split = None
self.subset = subset
white_list_formats = {'png', 'jpg', 'jpeg', 'bmp', 'ppm', 'tif', 'tiff'}
# first, count the number of samples and classes
self.samples = 0
if not classes:
classes = []
for subdir in sorted(os.listdir(directory)):
if os.path.isdir(os.path.join(directory, subdir)):
classes.append(subdir)
self.num_classes = len(classes)
self.class_indices = dict(zip(classes, range(len(classes))))
pool = multiprocessing.pool.ThreadPool()
function_partial = partial(
_count_valid_files_in_directory,
white_list_formats=white_list_formats,
follow_links=follow_links,
split=split)
self.samples = sum(
pool.map(function_partial,
(os.path.join(directory, subdir) for subdir in classes)))
print('Found %d images belonging to %d classes.' % (self.samples,
self.num_classes))
# second, build an index of the images in the different class subfolders
results = []
self.filenames = []
self.classes = np.zeros((self.samples,), dtype='int32')
i = 0
for dirpath in (os.path.join(directory, subdir) for subdir in classes):
results.append(
pool.apply_async(_list_valid_filenames_in_directory,
(dirpath, white_list_formats, split,
self.class_indices, follow_links)))
for res in results:
classes, filenames = res.get()
self.classes[i:i + len(classes)] = classes
self.filenames += filenames
i += len(classes)
pool.close()
pool.join()
super(DirectoryIterator, self).__init__(self.samples, batch_size, shuffle,
seed)
def _get_batches_of_transformed_samples(self, index_array):
batch_x = np.zeros((len(index_array),) + self.image_shape, dtype=K.floatx())
grayscale = self.color_mode == 'grayscale'
# build batch of image data
for i, j in enumerate(index_array):
fname = self.filenames[j]
img = load_img(
os.path.join(self.directory, fname),
grayscale=grayscale,
target_size=self.target_size,
interpolation=self.interpolation)
x = img_to_array(img, data_format=self.data_format)
x = self.image_data_generator.random_transform(x)
x = self.image_data_generator.standardize(x)
batch_x[i] = x
# optionally save augmented images to disk for debugging purposes
if self.save_to_dir:
for i, j in enumerate(index_array):
img = array_to_img(batch_x[i], self.data_format, scale=True)
fname = '{prefix}_{index}_{hash}.{format}'.format(
prefix=self.save_prefix,
index=j,
hash=np.random.randint(1e7),
format=self.save_format)
img.save(os.path.join(self.save_to_dir, fname))
# build batch of labels
if self.class_mode == 'input':
batch_y = batch_x.copy()
elif self.class_mode == 'sparse':
batch_y = self.classes[index_array]
elif self.class_mode == 'binary':
batch_y = self.classes[index_array].astype(K.floatx())
elif self.class_mode == 'categorical':
batch_y = np.zeros((len(batch_x), self.num_classes), dtype=K.floatx())
for i, label in enumerate(self.classes[index_array]):
batch_y[i, label] = 1.
else:
return batch_x
return batch_x, batch_y
def next(self):
"""For python 2.x.
Returns:
The next batch.
"""
with self.lock:
index_array = next(self.index_generator)
# The transformation of images is not under thread lock
# so it can be done in parallel
return self._get_batches_of_transformed_samples(index_array)