laywerrobot/lib/python3.6/site-packages/tensorflow/python/keras/layers/local.py
2020-08-27 21:55:39 +02:00

445 lines
18 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Locally-connected layers.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.keras import activations
from tensorflow.python.keras import backend as K
from tensorflow.python.keras import constraints
from tensorflow.python.keras import initializers
from tensorflow.python.keras import regularizers
from tensorflow.python.keras.engine.base_layer import InputSpec
from tensorflow.python.keras.engine.base_layer import Layer
from tensorflow.python.keras.utils import conv_utils
from tensorflow.python.keras.utils import tf_utils
from tensorflow.python.util.tf_export import tf_export
@tf_export('keras.layers.LocallyConnected1D')
class LocallyConnected1D(Layer):
"""Locally-connected layer for 1D inputs.
The `LocallyConnected1D` layer works similarly to
the `Conv1D` layer, except that weights are unshared,
that is, a different set of filters is applied at each different patch
of the input.
Example:
```python
# apply a unshared weight convolution 1d of length 3 to a sequence with
# 10 timesteps, with 64 output filters
model = Sequential()
model.add(LocallyConnected1D(64, 3, input_shape=(10, 32)))
# now model.output_shape == (None, 8, 64)
# add a new conv1d on top
model.add(LocallyConnected1D(32, 3))
# now model.output_shape == (None, 6, 32)
```
Arguments:
filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
kernel_size: An integer or tuple/list of a single integer,
specifying the length of the 1D convolution window.
strides: An integer or tuple/list of a single integer,
specifying the stride length of the convolution.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
padding: Currently only supports `"valid"` (case-insensitive).
`"same"` may be supported in the future.
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, length, channels)` while `channels_first`
corresponds to inputs with shape
`(batch, channels, length)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
activation: Activation function to use.
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix.
bias_initializer: Initializer for the bias vector.
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix.
bias_regularizer: Regularizer function applied to the bias vector.
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation")..
kernel_constraint: Constraint function applied to the kernel matrix.
bias_constraint: Constraint function applied to the bias vector.
Input shape:
3D tensor with shape: `(batch_size, steps, input_dim)`
Output shape:
3D tensor with shape: `(batch_size, new_steps, filters)`
`steps` value might have changed due to padding or strides.
"""
def __init__(self,
filters,
kernel_size,
strides=1,
padding='valid',
data_format=None,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super(LocallyConnected1D, self).__init__(**kwargs)
self.filters = filters
self.kernel_size = conv_utils.normalize_tuple(kernel_size, 1, 'kernel_size')
self.strides = conv_utils.normalize_tuple(strides, 1, 'strides')
self.padding = conv_utils.normalize_padding(padding)
if self.padding != 'valid':
raise ValueError('Invalid border mode for LocallyConnected1D '
'(only "valid" is supported): ' + padding)
self.data_format = conv_utils.normalize_data_format(data_format)
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.input_spec = InputSpec(ndim=3)
@tf_utils.shape_type_conversion
def build(self, input_shape):
if self.data_format == 'channels_first':
input_dim, input_length = input_shape[1], input_shape[2]
else:
input_dim, input_length = input_shape[2], input_shape[1]
if input_dim is None:
raise ValueError('Axis 2 of input should be fully-defined. '
'Found shape:', input_shape)
self.output_length = conv_utils.conv_output_length(
input_length, self.kernel_size[0], self.padding, self.strides[0])
self.kernel_shape = (self.output_length, self.kernel_size[0] * input_dim,
self.filters)
self.kernel = self.add_weight(
shape=self.kernel_shape,
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(
shape=(self.output_length, self.filters),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
if self.data_format == 'channels_first':
self.input_spec = InputSpec(ndim=3, axes={1: input_dim})
else:
self.input_spec = InputSpec(ndim=3, axes={-1: input_dim})
self.built = True
@tf_utils.shape_type_conversion
def compute_output_shape(self, input_shape):
if self.data_format == 'channels_first':
input_length = input_shape[2]
else:
input_length = input_shape[1]
length = conv_utils.conv_output_length(input_length, self.kernel_size[0],
self.padding, self.strides[0])
if self.data_format == 'channels_first':
return (input_shape[0], self.filters, length)
elif self.data_format == 'channels_last':
return (input_shape[0], length, self.filters)
def call(self, inputs):
output = K.local_conv(inputs, self.kernel, self.kernel_size, self.strides,
(self.output_length,), self.data_format)
if self.use_bias:
output = K.bias_add(output, self.bias, data_format=self.data_format)
output = self.activation(output)
return output
def get_config(self):
config = {
'filters':
self.filters,
'kernel_size':
self.kernel_size,
'strides':
self.strides,
'padding':
self.padding,
'data_format':
self.data_format,
'activation':
activations.serialize(self.activation),
'use_bias':
self.use_bias,
'kernel_initializer':
initializers.serialize(self.kernel_initializer),
'bias_initializer':
initializers.serialize(self.bias_initializer),
'kernel_regularizer':
regularizers.serialize(self.kernel_regularizer),
'bias_regularizer':
regularizers.serialize(self.bias_regularizer),
'activity_regularizer':
regularizers.serialize(self.activity_regularizer),
'kernel_constraint':
constraints.serialize(self.kernel_constraint),
'bias_constraint':
constraints.serialize(self.bias_constraint)
}
base_config = super(LocallyConnected1D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@tf_export('keras.layers.LocallyConnected2D')
class LocallyConnected2D(Layer):
"""Locally-connected layer for 2D inputs.
The `LocallyConnected2D` layer works similarly
to the `Conv2D` layer, except that weights are unshared,
that is, a different set of filters is applied at each
different patch of the input.
Examples:
```python
# apply a 3x3 unshared weights convolution with 64 output filters on a
32x32 image
# with `data_format="channels_last"`:
model = Sequential()
model.add(LocallyConnected2D(64, (3, 3), input_shape=(32, 32, 3)))
# now model.output_shape == (None, 30, 30, 64)
# notice that this layer will consume (30*30)*(3*3*3*64) + (30*30)*64
parameters
# add a 3x3 unshared weights convolution on top, with 32 output filters:
model.add(LocallyConnected2D(32, (3, 3)))
# now model.output_shape == (None, 28, 28, 32)
```
Arguments:
filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the convolution).
kernel_size: An integer or tuple/list of 2 integers, specifying the
width and height of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the width and height.
Can be a single integer to specify the same value for
all spatial dimensions.
padding: Currently only support `"valid"` (case-insensitive).
`"same"` will be supported in future.
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
activation: Activation function to use.
If you don't specify anything, no activation is applied
(ie. "linear" activation: `a(x) = x`).
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix.
bias_initializer: Initializer for the bias vector.
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix.
bias_regularizer: Regularizer function applied to the bias vector.
activity_regularizer: Regularizer function applied to
the output of the layer (its "activation")..
kernel_constraint: Constraint function applied to the kernel matrix.
bias_constraint: Constraint function applied to the bias vector.
Input shape:
4D tensor with shape:
`(samples, channels, rows, cols)` if data_format='channels_first'
or 4D tensor with shape:
`(samples, rows, cols, channels)` if data_format='channels_last'.
Output shape:
4D tensor with shape:
`(samples, filters, new_rows, new_cols)` if data_format='channels_first'
or 4D tensor with shape:
`(samples, new_rows, new_cols, filters)` if data_format='channels_last'.
`rows` and `cols` values might have changed due to padding.
"""
def __init__(self,
filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format=None,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super(LocallyConnected2D, self).__init__(**kwargs)
self.filters = filters
self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2, 'kernel_size')
self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
self.padding = conv_utils.normalize_padding(padding)
if self.padding != 'valid':
raise ValueError('Invalid border mode for LocallyConnected2D '
'(only "valid" is supported): ' + padding)
self.data_format = conv_utils.normalize_data_format(data_format)
self.activation = activations.get(activation)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.input_spec = InputSpec(ndim=4)
@tf_utils.shape_type_conversion
def build(self, input_shape):
if self.data_format == 'channels_last':
input_row, input_col = input_shape[1:-1]
input_filter = input_shape[3]
else:
input_row, input_col = input_shape[2:]
input_filter = input_shape[1]
if input_row is None or input_col is None:
raise ValueError('The spatial dimensions of the inputs to '
' a LocallyConnected2D layer '
'should be fully-defined, but layer received '
'the inputs shape ' + str(input_shape))
output_row = conv_utils.conv_output_length(input_row, self.kernel_size[0],
self.padding, self.strides[0])
output_col = conv_utils.conv_output_length(input_col, self.kernel_size[1],
self.padding, self.strides[1])
self.output_row = output_row
self.output_col = output_col
self.kernel_shape = (
output_row * output_col,
self.kernel_size[0] * self.kernel_size[1] * input_filter, self.filters)
self.kernel = self.add_weight(
shape=self.kernel_shape,
initializer=self.kernel_initializer,
name='kernel',
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
if self.use_bias:
self.bias = self.add_weight(
shape=(output_row, output_col, self.filters),
initializer=self.bias_initializer,
name='bias',
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = None
if self.data_format == 'channels_first':
self.input_spec = InputSpec(ndim=4, axes={1: input_filter})
else:
self.input_spec = InputSpec(ndim=4, axes={-1: input_filter})
self.built = True
@tf_utils.shape_type_conversion
def compute_output_shape(self, input_shape):
if self.data_format == 'channels_first':
rows = input_shape[2]
cols = input_shape[3]
elif self.data_format == 'channels_last':
rows = input_shape[1]
cols = input_shape[2]
rows = conv_utils.conv_output_length(rows, self.kernel_size[0],
self.padding, self.strides[0])
cols = conv_utils.conv_output_length(cols, self.kernel_size[1],
self.padding, self.strides[1])
if self.data_format == 'channels_first':
return (input_shape[0], self.filters, rows, cols)
elif self.data_format == 'channels_last':
return (input_shape[0], rows, cols, self.filters)
def call(self, inputs):
output = K.local_conv(inputs, self.kernel, self.kernel_size, self.strides,
(self.output_row, self.output_col), self.data_format)
if self.use_bias:
output = K.bias_add(output, self.bias, data_format=self.data_format)
output = self.activation(output)
return output
def get_config(self):
config = {
'filters':
self.filters,
'kernel_size':
self.kernel_size,
'strides':
self.strides,
'padding':
self.padding,
'data_format':
self.data_format,
'activation':
activations.serialize(self.activation),
'use_bias':
self.use_bias,
'kernel_initializer':
initializers.serialize(self.kernel_initializer),
'bias_initializer':
initializers.serialize(self.bias_initializer),
'kernel_regularizer':
regularizers.serialize(self.kernel_regularizer),
'bias_regularizer':
regularizers.serialize(self.bias_regularizer),
'activity_regularizer':
regularizers.serialize(self.activity_regularizer),
'kernel_constraint':
constraints.serialize(self.kernel_constraint),
'bias_constraint':
constraints.serialize(self.bias_constraint)
}
base_config = super(LocallyConnected2D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))