laywerrobot/lib/python3.6/site-packages/tensorflow/python/eager/tape.py
2020-08-27 21:55:39 +02:00

97 lines
2.8 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Gradient tape utilites."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import contextlib
from tensorflow.python import pywrap_tensorflow
class Tape(object):
"""Represents a gradient propagation trace."""
def __init__(self, tape):
self._tape = tape
def watched_variables(self):
return pywrap_tensorflow.TFE_Py_TapeWatchedVariables(self._tape)
def push_new_tape(persistent=False):
"""Pushes a new tape onto the tape stack."""
tape = pywrap_tensorflow.TFE_Py_TapeSetNew(persistent)
return Tape(tape)
def push_tape(tape):
"""Pushes an existing tape onto the tape stack."""
pywrap_tensorflow.TFE_Py_TapeSetAdd(tape._tape) # pylint: disable=protected-access
def watch(tensor):
"""Marks this tensor to be watched by all tapes in the stack.
Args:
tensor: tensor to be watched.
"""
pywrap_tensorflow.TFE_Py_TapeSetWatch(tensor)
def watch_variable(variable):
"""Marks this variable to be watched by all tapes in the stack.
Args:
variable: variable to be watched.
"""
pywrap_tensorflow.TFE_Py_TapeSetWatchVariable(variable)
def pop_tape(tape):
"""Pops the top tape in the stack, if any."""
pywrap_tensorflow.TFE_Py_TapeSetRemove(tape._tape) # pylint: disable=protected-access
@contextlib.contextmanager
def stop_recording():
try:
pywrap_tensorflow.TFE_Py_TapeSetStopOnThread()
yield
finally:
pywrap_tensorflow.TFE_Py_TapeSetRestartOnThread()
def should_record(tensors):
"""Returns true if any tape in the stack watches any of these tensors."""
return pywrap_tensorflow.TFE_Py_TapeSetShouldRecord(tensors)
def record_operation(op_type, output_tensors, input_tensors, backward_function):
"""Records the operation on all tapes in the stack."""
pywrap_tensorflow.TFE_Py_TapeSetRecordOperation(
op_type, output_tensors, input_tensors, backward_function)
def delete_trace(tensor_id):
"""Deletes traces for this Tensor from all tapes in the stack."""
pywrap_tensorflow.TFE_Py_TapeSetDeleteTrace(tensor_id)
def could_possibly_record():
"""Returns True if any tape is active."""
return not pywrap_tensorflow.TFE_Py_TapeSetIsEmpty()