laywerrobot/lib/python3.6/site-packages/tensorflow/contrib/timeseries/examples/predict.py
2020-08-27 21:55:39 +02:00

132 lines
5.4 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""An example of training and predicting with a TFTS estimator."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import numpy as np
import tensorflow as tf
try:
import matplotlib # pylint: disable=g-import-not-at-top
matplotlib.use("TkAgg") # Need Tk for interactive plots.
from matplotlib import pyplot # pylint: disable=g-import-not-at-top
HAS_MATPLOTLIB = True
except ImportError:
# Plotting requires matplotlib, but the unit test running this code may
# execute in an environment without it (i.e. matplotlib is not a build
# dependency). We'd still like to test the TensorFlow-dependent parts of this
# example, namely train_and_predict.
HAS_MATPLOTLIB = False
FLAGS = None
def structural_ensemble_train_and_predict(csv_file_name):
# Cycle between 5 latent values over a period of 100. This leads to a very
# smooth periodic component (and a small model), which is a good fit for our
# example data. Modeling high-frequency periodic variations will require a
# higher cycle_num_latent_values.
structural = tf.contrib.timeseries.StructuralEnsembleRegressor(
periodicities=100, num_features=1, cycle_num_latent_values=5)
return train_and_predict(structural, csv_file_name, training_steps=150)
def ar_train_and_predict(csv_file_name):
# An autoregressive model, with periodicity handled as a time-based
# regression. Note that this requires windows of size 16 (input_window_size +
# output_window_size) for training.
ar = tf.contrib.timeseries.ARRegressor(
periodicities=100, input_window_size=10, output_window_size=6,
num_features=1,
# Use the (default) normal likelihood loss to adaptively fit the
# variance. SQUARED_LOSS overestimates variance when there are trends in
# the series.
loss=tf.contrib.timeseries.ARModel.NORMAL_LIKELIHOOD_LOSS)
return train_and_predict(ar, csv_file_name, training_steps=600)
def train_and_predict(estimator, csv_file_name, training_steps):
"""A simple example of training and predicting."""
# Read data in the default "time,value" CSV format with no header
reader = tf.contrib.timeseries.CSVReader(csv_file_name)
# Set up windowing and batching for training
train_input_fn = tf.contrib.timeseries.RandomWindowInputFn(
reader, batch_size=16, window_size=16)
# Fit model parameters to data
estimator.train(input_fn=train_input_fn, steps=training_steps)
# Evaluate on the full dataset sequentially, collecting in-sample predictions
# for a qualitative evaluation. Note that this loads the whole dataset into
# memory. For quantitative evaluation, use RandomWindowChunker.
evaluation_input_fn = tf.contrib.timeseries.WholeDatasetInputFn(reader)
evaluation = estimator.evaluate(input_fn=evaluation_input_fn, steps=1)
# Predict starting after the evaluation
(predictions,) = tuple(estimator.predict(
input_fn=tf.contrib.timeseries.predict_continuation_input_fn(
evaluation, steps=200)))
times = evaluation["times"][0]
observed = evaluation["observed"][0, :, 0]
mean = np.squeeze(np.concatenate(
[evaluation["mean"][0], predictions["mean"]], axis=0))
variance = np.squeeze(np.concatenate(
[evaluation["covariance"][0], predictions["covariance"]], axis=0))
all_times = np.concatenate([times, predictions["times"]], axis=0)
upper_limit = mean + np.sqrt(variance)
lower_limit = mean - np.sqrt(variance)
return times, observed, all_times, mean, upper_limit, lower_limit
def make_plot(name, training_times, observed, all_times, mean,
upper_limit, lower_limit):
"""Plot a time series in a new figure."""
pyplot.figure()
pyplot.plot(training_times, observed, "b", label="training series")
pyplot.plot(all_times, mean, "r", label="forecast")
pyplot.plot(all_times, upper_limit, "g", label="forecast upper bound")
pyplot.plot(all_times, lower_limit, "g", label="forecast lower bound")
pyplot.fill_between(all_times, lower_limit, upper_limit, color="grey",
alpha="0.2")
pyplot.axvline(training_times[-1], color="k", linestyle="--")
pyplot.xlabel("time")
pyplot.ylabel("observations")
pyplot.legend(loc=0)
pyplot.title(name)
def main(unused_argv):
if not HAS_MATPLOTLIB:
raise ImportError(
"Please install matplotlib to generate a plot from this example.")
make_plot("Structural ensemble",
*structural_ensemble_train_and_predict(FLAGS.input_filename))
make_plot("AR", *ar_train_and_predict(FLAGS.input_filename))
pyplot.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_filename",
type=str,
required=True,
help="Input csv file.")
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)