124 lines
4.8 KiB
Python
124 lines
4.8 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Momentum for TensorFlow."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from tensorflow.contrib.optimizer_v2 import optimizer_v2
|
|
from tensorflow.python.training import training_ops
|
|
|
|
|
|
class MomentumOptimizer(optimizer_v2.OptimizerV2):
|
|
"""Optimizer that implements the Momentum algorithm.
|
|
|
|
Computes (if `use_nesterov = False`):
|
|
|
|
```
|
|
accumulation = momentum * accumulation + gradient
|
|
variable -= learning_rate * accumulation
|
|
```
|
|
|
|
Note that in the dense version of this algorithm, `accumulation` is updated
|
|
and applied regardless of a gradient's value, whereas the sparse version (when
|
|
the gradient is an `IndexedSlices`, typically because of `tf.gather` or an
|
|
embedding) only updates variable slices and corresponding `accumulation` terms
|
|
when that part of the variable was used in the forward pass.
|
|
"""
|
|
|
|
def __init__(self, learning_rate, momentum,
|
|
use_locking=False, name="Momentum", use_nesterov=False):
|
|
"""Construct a new Momentum optimizer.
|
|
|
|
Some of the args below are hyperparameters, where a hyperparameter is
|
|
defined as a scalar Tensor, a regular Python value or a callable (which
|
|
will be evaluated when `apply_gradients` is called) returning a scalar
|
|
Tensor or a Python value.
|
|
|
|
Args:
|
|
learning_rate: A float hyperparameter. The learning rate.
|
|
momentum: A float hyperparameter. The momentum.
|
|
use_locking: If `True` use locks for update operations.
|
|
name: Optional name prefix for the operations created when applying
|
|
gradients. Defaults to "Momentum".
|
|
use_nesterov: If `True` use Nesterov Momentum.
|
|
See [Sutskever et al., 2013](
|
|
http://jmlr.org/proceedings/papers/v28/sutskever13.pdf).
|
|
This implementation always computes gradients at the value of the
|
|
variable(s) passed to the optimizer. Using Nesterov Momentum makes the
|
|
variable(s) track the values called `theta_t + mu*v_t` in the paper.
|
|
|
|
@compatibility(eager)
|
|
When eager execution is enabled, learning_rate and momentum can each be a
|
|
callable that takes no arguments and returns the actual value to use. This
|
|
can be useful for changing these values across different invocations of
|
|
optimizer functions.
|
|
@end_compatibility
|
|
"""
|
|
super(MomentumOptimizer, self).__init__(use_locking, name)
|
|
self._set_hyper("learning_rate", learning_rate)
|
|
self._set_hyper("momentum", momentum)
|
|
self._use_nesterov = use_nesterov
|
|
|
|
def _create_vars(self, var_list, state):
|
|
for v in var_list:
|
|
state.zeros_slot(v, "momentum")
|
|
|
|
def _apply_dense(self, grad, var, state):
|
|
mom = state.get_slot(var, "momentum")
|
|
return training_ops.apply_momentum(
|
|
var,
|
|
mom,
|
|
state.get_hyper("learning_rate", var.dtype.base_dtype),
|
|
grad,
|
|
state.get_hyper("momentum", var.dtype.base_dtype),
|
|
use_locking=self._use_locking,
|
|
use_nesterov=self._use_nesterov).op
|
|
|
|
def _resource_apply_dense(self, grad, var, state):
|
|
mom = state.get_slot(var, "momentum")
|
|
return training_ops.resource_apply_momentum(
|
|
var.handle,
|
|
mom.handle,
|
|
state.get_hyper("learning_rate", var.dtype.base_dtype),
|
|
grad,
|
|
state.get_hyper("momentum", var.dtype.base_dtype),
|
|
use_locking=self._use_locking,
|
|
use_nesterov=self._use_nesterov)
|
|
|
|
def _apply_sparse(self, grad, var, state):
|
|
mom = state.get_slot(var, "momentum")
|
|
return training_ops.sparse_apply_momentum(
|
|
var,
|
|
mom,
|
|
state.get_hyper("learning_rate", var.dtype.base_dtype),
|
|
grad.values,
|
|
grad.indices,
|
|
state.get_hyper("momentum", var.dtype.base_dtype),
|
|
use_locking=self._use_locking,
|
|
use_nesterov=self._use_nesterov).op
|
|
|
|
def _resource_apply_sparse(self, grad, var, indices, state):
|
|
mom = state.get_slot(var, "momentum")
|
|
return training_ops.resource_sparse_apply_momentum(
|
|
var.handle,
|
|
mom.handle,
|
|
state.get_hyper("learning_rate", var.dtype.base_dtype),
|
|
grad,
|
|
indices,
|
|
state.get_hyper("momentum", var.dtype.base_dtype),
|
|
use_locking=self._use_locking,
|
|
use_nesterov=self._use_nesterov)
|