99 lines
3.8 KiB
Python
99 lines
3.8 KiB
Python
"""Utilities for visualizing dependency graphs."""
|
|
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from tensorflow.python import pywrap_tensorflow
|
|
from tensorflow.python.training.checkpointable import base as checkpointable
|
|
from tensorflow.python.training.checkpointable import util as checkpointable_utils
|
|
|
|
|
|
def dot_graph_from_checkpoint(save_path):
|
|
r"""Visualizes an object-based checkpoint (from `tf.train.Checkpoint`).
|
|
|
|
Useful for inspecting checkpoints and debugging loading issues.
|
|
|
|
Example usage from Python (requires pydot):
|
|
```python
|
|
import tensorflow as tf
|
|
import pydot
|
|
|
|
dot_string = tf.contrib.checkpoint.dot_graph_from_checkpoint('/path/to/ckpt')
|
|
parsed, = pydot.graph_from_dot_data(dot_string)
|
|
parsed.write_svg('/tmp/tensorflow/visualized_checkpoint.svg')
|
|
```
|
|
|
|
Example command line usage:
|
|
```sh
|
|
python -c "import tensorflow as tf;\
|
|
print(tf.contrib.checkpoint.dot_graph_from_checkpoint('/path/to/ckpt'))"\
|
|
| dot -Tsvg > /tmp/tensorflow/checkpoint_viz.svg
|
|
```
|
|
|
|
Args:
|
|
save_path: The checkpoint prefix, as returned by `tf.train.Checkpoint.save`
|
|
or `tf.train.latest_checkpoint`.
|
|
Returns:
|
|
A graph in DOT format as a string.
|
|
"""
|
|
reader = pywrap_tensorflow.NewCheckpointReader(save_path)
|
|
object_graph = checkpointable_utils.object_metadata(save_path)
|
|
shape_map = reader.get_variable_to_shape_map()
|
|
dtype_map = reader.get_variable_to_dtype_map()
|
|
graph = 'digraph {\n'
|
|
def _escape(name):
|
|
return name.replace('"', '\\"')
|
|
slot_ids = set()
|
|
for node in object_graph.nodes:
|
|
for slot_reference in node.slot_variables:
|
|
slot_ids.add(slot_reference.slot_variable_node_id)
|
|
for node_id, node in enumerate(object_graph.nodes):
|
|
if (len(node.attributes) == 1
|
|
and node.attributes[0].name == checkpointable.VARIABLE_VALUE_KEY):
|
|
if node_id in slot_ids:
|
|
color = 'orange'
|
|
tooltip_prefix = 'Slot variable'
|
|
else:
|
|
color = 'blue'
|
|
tooltip_prefix = 'Variable'
|
|
attribute = node.attributes[0]
|
|
graph += ('N_%d [shape=point label="" color=%s width=.25'
|
|
' tooltip="%s %s shape=%s %s"]\n') % (
|
|
node_id,
|
|
color,
|
|
tooltip_prefix,
|
|
_escape(attribute.full_name),
|
|
shape_map[attribute.checkpoint_key],
|
|
dtype_map[attribute.checkpoint_key].name)
|
|
elif node.slot_variables:
|
|
graph += ('N_%d [shape=point label="" width=.25 color=red,'
|
|
'tooltip="Optimizer"]\n') % node_id
|
|
else:
|
|
graph += 'N_%d [shape=point label="" width=.25]\n' % node_id
|
|
for reference in node.children:
|
|
graph += 'N_%d -> N_%d [label="%s"]\n' % (
|
|
node_id, reference.node_id, _escape(reference.local_name))
|
|
for slot_reference in node.slot_variables:
|
|
graph += 'N_%d -> N_%d [label="%s" style=dotted]\n' % (
|
|
node_id,
|
|
slot_reference.slot_variable_node_id,
|
|
_escape(slot_reference.slot_name))
|
|
graph += 'N_%d -> N_%d [style=dotted]\n' % (
|
|
slot_reference.original_variable_node_id,
|
|
slot_reference.slot_variable_node_id)
|
|
graph += '}\n'
|
|
return graph
|