laywerrobot/lib/python3.6/site-packages/sklearn/tests/test_discriminant_analysis.py
2020-08-27 21:55:39 +02:00

367 lines
14 KiB
Python

import numpy as np
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_false
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_raise_message
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import assert_warns_message
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import ignore_warnings
from sklearn.datasets import make_blobs
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.discriminant_analysis import _cov
# Data is just 6 separable points in the plane
X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype='f')
y = np.array([1, 1, 1, 2, 2, 2])
y3 = np.array([1, 1, 2, 2, 3, 3])
# Degenerate data with only one feature (still should be separable)
X1 = np.array([[-2, ], [-1, ], [-1, ], [1, ], [1, ], [2, ]], dtype='f')
# Data is just 9 separable points in the plane
X6 = np.array([[0, 0], [-2, -2], [-2, -1], [-1, -1], [-1, -2],
[1, 3], [1, 2], [2, 1], [2, 2]])
y6 = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2])
y7 = np.array([1, 2, 3, 2, 3, 1, 2, 3, 1])
# Degenerate data with 1 feature (still should be separable)
X7 = np.array([[-3, ], [-2, ], [-1, ], [-1, ], [0, ], [1, ], [1, ],
[2, ], [3, ]])
# Data that has zero variance in one dimension and needs regularization
X2 = np.array([[-3, 0], [-2, 0], [-1, 0], [-1, 0], [0, 0], [1, 0], [1, 0],
[2, 0], [3, 0]])
# One element class
y4 = np.array([1, 1, 1, 1, 1, 1, 1, 1, 2])
# Data with less samples in a class than n_features
X5 = np.c_[np.arange(8), np.zeros((8, 3))]
y5 = np.array([0, 0, 0, 0, 0, 1, 1, 1])
solver_shrinkage = [('svd', None), ('lsqr', None), ('eigen', None),
('lsqr', 'auto'), ('lsqr', 0), ('lsqr', 0.43),
('eigen', 'auto'), ('eigen', 0), ('eigen', 0.43)]
def test_lda_predict():
# Test LDA classification.
# This checks that LDA implements fit and predict and returns correct
# values for simple toy data.
for test_case in solver_shrinkage:
solver, shrinkage = test_case
clf = LinearDiscriminantAnalysis(solver=solver, shrinkage=shrinkage)
y_pred = clf.fit(X, y).predict(X)
assert_array_equal(y_pred, y, 'solver %s' % solver)
# Assert that it works with 1D data
y_pred1 = clf.fit(X1, y).predict(X1)
assert_array_equal(y_pred1, y, 'solver %s' % solver)
# Test probability estimates
y_proba_pred1 = clf.predict_proba(X1)
assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y,
'solver %s' % solver)
y_log_proba_pred1 = clf.predict_log_proba(X1)
assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1,
8, 'solver %s' % solver)
# Primarily test for commit 2f34950 -- "reuse" of priors
y_pred3 = clf.fit(X, y3).predict(X)
# LDA shouldn't be able to separate those
assert_true(np.any(y_pred3 != y3), 'solver %s' % solver)
# Test invalid shrinkages
clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage=-0.2231)
assert_raises(ValueError, clf.fit, X, y)
clf = LinearDiscriminantAnalysis(solver="eigen", shrinkage="dummy")
assert_raises(ValueError, clf.fit, X, y)
clf = LinearDiscriminantAnalysis(solver="svd", shrinkage="auto")
assert_raises(NotImplementedError, clf.fit, X, y)
# Test unknown solver
clf = LinearDiscriminantAnalysis(solver="dummy")
assert_raises(ValueError, clf.fit, X, y)
def test_lda_priors():
# Test priors (negative priors)
priors = np.array([0.5, -0.5])
clf = LinearDiscriminantAnalysis(priors=priors)
msg = "priors must be non-negative"
assert_raise_message(ValueError, msg, clf.fit, X, y)
# Test that priors passed as a list are correctly handled (run to see if
# failure)
clf = LinearDiscriminantAnalysis(priors=[0.5, 0.5])
clf.fit(X, y)
# Test that priors always sum to 1
priors = np.array([0.5, 0.6])
prior_norm = np.array([0.45, 0.55])
clf = LinearDiscriminantAnalysis(priors=priors)
assert_warns(UserWarning, clf.fit, X, y)
assert_array_almost_equal(clf.priors_, prior_norm, 2)
def test_lda_coefs():
# Test if the coefficients of the solvers are approximately the same.
n_features = 2
n_classes = 2
n_samples = 1000
X, y = make_blobs(n_samples=n_samples, n_features=n_features,
centers=n_classes, random_state=11)
clf_lda_svd = LinearDiscriminantAnalysis(solver="svd")
clf_lda_lsqr = LinearDiscriminantAnalysis(solver="lsqr")
clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen")
clf_lda_svd.fit(X, y)
clf_lda_lsqr.fit(X, y)
clf_lda_eigen.fit(X, y)
assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1)
assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1)
assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1)
def test_lda_transform():
# Test LDA transform.
clf = LinearDiscriminantAnalysis(solver="svd", n_components=1)
X_transformed = clf.fit(X, y).transform(X)
assert_equal(X_transformed.shape[1], 1)
clf = LinearDiscriminantAnalysis(solver="eigen", n_components=1)
X_transformed = clf.fit(X, y).transform(X)
assert_equal(X_transformed.shape[1], 1)
clf = LinearDiscriminantAnalysis(solver="lsqr", n_components=1)
clf.fit(X, y)
msg = "transform not implemented for 'lsqr'"
assert_raise_message(NotImplementedError, msg, clf.transform, X)
def test_lda_explained_variance_ratio():
# Test if the sum of the normalized eigen vectors values equals 1,
# Also tests whether the explained_variance_ratio_ formed by the
# eigen solver is the same as the explained_variance_ratio_ formed
# by the svd solver
state = np.random.RandomState(0)
X = state.normal(loc=0, scale=100, size=(40, 20))
y = state.randint(0, 3, size=(40,))
clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen")
clf_lda_eigen.fit(X, y)
assert_almost_equal(clf_lda_eigen.explained_variance_ratio_.sum(), 1.0, 3)
assert_equal(clf_lda_eigen.explained_variance_ratio_.shape, (2,),
"Unexpected length for explained_variance_ratio_")
clf_lda_svd = LinearDiscriminantAnalysis(solver="svd")
clf_lda_svd.fit(X, y)
assert_almost_equal(clf_lda_svd.explained_variance_ratio_.sum(), 1.0, 3)
assert_equal(clf_lda_svd.explained_variance_ratio_.shape, (2,),
"Unexpected length for explained_variance_ratio_")
assert_array_almost_equal(clf_lda_svd.explained_variance_ratio_,
clf_lda_eigen.explained_variance_ratio_)
def test_lda_orthogonality():
# arrange four classes with their means in a kite-shaped pattern
# the longer distance should be transformed to the first component, and
# the shorter distance to the second component.
means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]])
# We construct perfectly symmetric distributions, so the LDA can estimate
# precise means.
scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0],
[0, 0, 0.1], [0, 0, -0.1]])
X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3))
y = np.repeat(np.arange(means.shape[0]), scatter.shape[0])
# Fit LDA and transform the means
clf = LinearDiscriminantAnalysis(solver="svd").fit(X, y)
means_transformed = clf.transform(means)
d1 = means_transformed[3] - means_transformed[0]
d2 = means_transformed[2] - means_transformed[1]
d1 /= np.sqrt(np.sum(d1 ** 2))
d2 /= np.sqrt(np.sum(d2 ** 2))
# the transformed within-class covariance should be the identity matrix
assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2))
# the means of classes 0 and 3 should lie on the first component
assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0)
# the means of classes 1 and 2 should lie on the second component
assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0)
def test_lda_scaling():
# Test if classification works correctly with differently scaled features.
n = 100
rng = np.random.RandomState(1234)
# use uniform distribution of features to make sure there is absolutely no
# overlap between classes.
x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0]
x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0]
x = np.vstack((x1, x2)) * [1, 100, 10000]
y = [-1] * n + [1] * n
for solver in ('svd', 'lsqr', 'eigen'):
clf = LinearDiscriminantAnalysis(solver=solver)
# should be able to separate the data perfectly
assert_equal(clf.fit(x, y).score(x, y), 1.0,
'using covariance: %s' % solver)
def test_lda_store_covariance():
# Test for slover 'lsqr' and 'eigen'
# 'store_covariance' has no effect on 'lsqr' and 'eigen' solvers
for solver in ('lsqr', 'eigen'):
clf = LinearDiscriminantAnalysis(solver=solver).fit(X6, y6)
assert_true(hasattr(clf, 'covariance_'))
# Test the actual attribute:
clf = LinearDiscriminantAnalysis(solver=solver,
store_covariance=True).fit(X6, y6)
assert_true(hasattr(clf, 'covariance_'))
assert_array_almost_equal(
clf.covariance_,
np.array([[0.422222, 0.088889], [0.088889, 0.533333]])
)
# Test for SVD slover, the default is to not set the covariances_ attribute
clf = LinearDiscriminantAnalysis(solver='svd').fit(X6, y6)
assert_false(hasattr(clf, 'covariance_'))
# Test the actual attribute:
clf = LinearDiscriminantAnalysis(solver=solver,
store_covariance=True).fit(X6, y6)
assert_true(hasattr(clf, 'covariance_'))
assert_array_almost_equal(
clf.covariance_,
np.array([[0.422222, 0.088889], [0.088889, 0.533333]])
)
def test_qda():
# QDA classification.
# This checks that QDA implements fit and predict and returns
# correct values for a simple toy dataset.
clf = QuadraticDiscriminantAnalysis()
y_pred = clf.fit(X6, y6).predict(X6)
assert_array_equal(y_pred, y6)
# Assure that it works with 1D data
y_pred1 = clf.fit(X7, y6).predict(X7)
assert_array_equal(y_pred1, y6)
# Test probas estimates
y_proba_pred1 = clf.predict_proba(X7)
assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y6)
y_log_proba_pred1 = clf.predict_log_proba(X7)
assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8)
y_pred3 = clf.fit(X6, y7).predict(X6)
# QDA shouldn't be able to separate those
assert_true(np.any(y_pred3 != y7))
# Classes should have at least 2 elements
assert_raises(ValueError, clf.fit, X6, y4)
def test_qda_priors():
clf = QuadraticDiscriminantAnalysis()
y_pred = clf.fit(X6, y6).predict(X6)
n_pos = np.sum(y_pred == 2)
neg = 1e-10
clf = QuadraticDiscriminantAnalysis(priors=np.array([neg, 1 - neg]))
y_pred = clf.fit(X6, y6).predict(X6)
n_pos2 = np.sum(y_pred == 2)
assert_greater(n_pos2, n_pos)
def test_qda_store_covariance():
# The default is to not set the covariances_ attribute
clf = QuadraticDiscriminantAnalysis().fit(X6, y6)
assert_false(hasattr(clf, 'covariance_'))
# Test the actual attribute:
clf = QuadraticDiscriminantAnalysis(store_covariance=True).fit(X6, y6)
assert_true(hasattr(clf, 'covariance_'))
assert_array_almost_equal(
clf.covariance_[0],
np.array([[0.7, 0.45], [0.45, 0.7]])
)
assert_array_almost_equal(
clf.covariance_[1],
np.array([[0.33333333, -0.33333333], [-0.33333333, 0.66666667]])
)
def test_qda_deprecation():
# Test the deprecation
clf = QuadraticDiscriminantAnalysis(store_covariances=True)
assert_warns_message(DeprecationWarning, "'store_covariances' was renamed"
" to store_covariance in version 0.19 and will be "
"removed in 0.21.", clf.fit, X, y)
# check that covariance_ (and covariances_ with warning) is stored
assert_warns_message(DeprecationWarning, "Attribute covariances_ was "
"deprecated in version 0.19 and will be removed "
"in 0.21. Use covariance_ instead", getattr, clf,
'covariances_')
def test_qda_regularization():
# the default is reg_param=0. and will cause issues
# when there is a constant variable
clf = QuadraticDiscriminantAnalysis()
with ignore_warnings():
y_pred = clf.fit(X2, y6).predict(X2)
assert_true(np.any(y_pred != y6))
# adding a little regularization fixes the problem
clf = QuadraticDiscriminantAnalysis(reg_param=0.01)
with ignore_warnings():
clf.fit(X2, y6)
y_pred = clf.predict(X2)
assert_array_equal(y_pred, y6)
# Case n_samples_in_a_class < n_features
clf = QuadraticDiscriminantAnalysis(reg_param=0.1)
with ignore_warnings():
clf.fit(X5, y5)
y_pred5 = clf.predict(X5)
assert_array_equal(y_pred5, y5)
def test_covariance():
x, y = make_blobs(n_samples=100, n_features=5,
centers=1, random_state=42)
# make features correlated
x = np.dot(x, np.arange(x.shape[1] ** 2).reshape(x.shape[1], x.shape[1]))
c_e = _cov(x, 'empirical')
assert_almost_equal(c_e, c_e.T)
c_s = _cov(x, 'auto')
assert_almost_equal(c_s, c_s.T)