laywerrobot/lib/python3.6/site-packages/sklearn/svm/bounds.py
2020-08-27 21:55:39 +02:00

73 lines
2.6 KiB
Python

"""Determination of parameter bounds"""
# Author: Paolo Losi
# License: BSD 3 clause
import numpy as np
from ..preprocessing import LabelBinarizer
from ..utils.validation import check_consistent_length, check_array
from ..utils.extmath import safe_sparse_dot
def l1_min_c(X, y, loss='squared_hinge', fit_intercept=True,
intercept_scaling=1.0):
"""
Return the lowest bound for C such that for C in (l1_min_C, infinity)
the model is guaranteed not to be empty. This applies to l1 penalized
classifiers, such as LinearSVC with penalty='l1' and
linear_model.LogisticRegression with penalty='l1'.
This value is valid if class_weight parameter in fit() is not set.
Parameters
----------
X : array-like or sparse matrix, shape = [n_samples, n_features]
Training vector, where n_samples in the number of samples and
n_features is the number of features.
y : array, shape = [n_samples]
Target vector relative to X
loss : {'squared_hinge', 'log'}, default 'squared_hinge'
Specifies the loss function.
With 'squared_hinge' it is the squared hinge loss (a.k.a. L2 loss).
With 'log' it is the loss of logistic regression models.
'l2' is accepted as an alias for 'squared_hinge', for backward
compatibility reasons, but should not be used in new code.
fit_intercept : bool, default: True
Specifies if the intercept should be fitted by the model.
It must match the fit() method parameter.
intercept_scaling : float, default: 1
when fit_intercept is True, instance vector x becomes
[x, intercept_scaling],
i.e. a "synthetic" feature with constant value equals to
intercept_scaling is appended to the instance vector.
It must match the fit() method parameter.
Returns
-------
l1_min_c : float
minimum value for C
"""
if loss not in ('squared_hinge', 'log'):
raise ValueError('loss type not in ("squared_hinge", "log", "l2")')
X = check_array(X, accept_sparse='csc')
check_consistent_length(X, y)
Y = LabelBinarizer(neg_label=-1).fit_transform(y).T
# maximum absolute value over classes and features
den = np.max(np.abs(safe_sparse_dot(Y, X)))
if fit_intercept:
bias = intercept_scaling * np.ones((np.size(y), 1))
den = max(den, abs(np.dot(Y, bias)).max())
if den == 0.0:
raise ValueError('Ill-posed l1_min_c calculation: l1 will always '
'select zero coefficients for this data')
if loss == 'squared_hinge':
return 0.5 / den
else: # loss == 'log':
return 2.0 / den