61 lines
1.4 KiB
Python
61 lines
1.4 KiB
Python
"""
|
|
The :mod:`sklearn.preprocessing` module includes scaling, centering,
|
|
normalization, binarization and imputation methods.
|
|
"""
|
|
|
|
from ._function_transformer import FunctionTransformer
|
|
|
|
from .data import Binarizer
|
|
from .data import KernelCenterer
|
|
from .data import MinMaxScaler
|
|
from .data import MaxAbsScaler
|
|
from .data import Normalizer
|
|
from .data import RobustScaler
|
|
from .data import StandardScaler
|
|
from .data import QuantileTransformer
|
|
from .data import add_dummy_feature
|
|
from .data import binarize
|
|
from .data import normalize
|
|
from .data import scale
|
|
from .data import robust_scale
|
|
from .data import maxabs_scale
|
|
from .data import minmax_scale
|
|
from .data import quantile_transform
|
|
from .data import OneHotEncoder
|
|
|
|
from .data import PolynomialFeatures
|
|
|
|
from .label import label_binarize
|
|
from .label import LabelBinarizer
|
|
from .label import LabelEncoder
|
|
from .label import MultiLabelBinarizer
|
|
|
|
from .imputation import Imputer
|
|
|
|
|
|
__all__ = [
|
|
'Binarizer',
|
|
'FunctionTransformer',
|
|
'Imputer',
|
|
'KernelCenterer',
|
|
'LabelBinarizer',
|
|
'LabelEncoder',
|
|
'MultiLabelBinarizer',
|
|
'MinMaxScaler',
|
|
'MaxAbsScaler',
|
|
'QuantileTransformer',
|
|
'Normalizer',
|
|
'OneHotEncoder',
|
|
'RobustScaler',
|
|
'StandardScaler',
|
|
'add_dummy_feature',
|
|
'PolynomialFeatures',
|
|
'binarize',
|
|
'normalize',
|
|
'scale',
|
|
'robust_scale',
|
|
'maxabs_scale',
|
|
'minmax_scale',
|
|
'label_binarize',
|
|
'quantile_transform',
|
|
]
|