365 lines
12 KiB
Python
365 lines
12 KiB
Python
"""Restricted Boltzmann Machine
|
|
"""
|
|
|
|
# Authors: Yann N. Dauphin <dauphiya@iro.umontreal.ca>
|
|
# Vlad Niculae
|
|
# Gabriel Synnaeve
|
|
# Lars Buitinck
|
|
# License: BSD 3 clause
|
|
|
|
import time
|
|
|
|
import numpy as np
|
|
import scipy.sparse as sp
|
|
from scipy.special import expit # logistic function
|
|
|
|
from ..base import BaseEstimator
|
|
from ..base import TransformerMixin
|
|
from ..externals.six.moves import xrange
|
|
from ..utils import check_array
|
|
from ..utils import check_random_state
|
|
from ..utils import gen_even_slices
|
|
from ..utils import issparse
|
|
from ..utils.extmath import safe_sparse_dot
|
|
from ..utils.extmath import log_logistic
|
|
from ..utils.validation import check_is_fitted
|
|
|
|
|
|
class BernoulliRBM(BaseEstimator, TransformerMixin):
|
|
"""Bernoulli Restricted Boltzmann Machine (RBM).
|
|
|
|
A Restricted Boltzmann Machine with binary visible units and
|
|
binary hidden units. Parameters are estimated using Stochastic Maximum
|
|
Likelihood (SML), also known as Persistent Contrastive Divergence (PCD)
|
|
[2].
|
|
|
|
The time complexity of this implementation is ``O(d ** 2)`` assuming
|
|
d ~ n_features ~ n_components.
|
|
|
|
Read more in the :ref:`User Guide <rbm>`.
|
|
|
|
Parameters
|
|
----------
|
|
n_components : int, optional
|
|
Number of binary hidden units.
|
|
|
|
learning_rate : float, optional
|
|
The learning rate for weight updates. It is *highly* recommended
|
|
to tune this hyper-parameter. Reasonable values are in the
|
|
10**[0., -3.] range.
|
|
|
|
batch_size : int, optional
|
|
Number of examples per minibatch.
|
|
|
|
n_iter : int, optional
|
|
Number of iterations/sweeps over the training dataset to perform
|
|
during training.
|
|
|
|
verbose : int, optional
|
|
The verbosity level. The default, zero, means silent mode.
|
|
|
|
random_state : integer or numpy.RandomState, optional
|
|
A random number generator instance to define the state of the
|
|
random permutations generator. If an integer is given, it fixes the
|
|
seed. Defaults to the global numpy random number generator.
|
|
|
|
Attributes
|
|
----------
|
|
intercept_hidden_ : array-like, shape (n_components,)
|
|
Biases of the hidden units.
|
|
|
|
intercept_visible_ : array-like, shape (n_features,)
|
|
Biases of the visible units.
|
|
|
|
components_ : array-like, shape (n_components, n_features)
|
|
Weight matrix, where n_features in the number of
|
|
visible units and n_components is the number of hidden units.
|
|
|
|
Examples
|
|
--------
|
|
|
|
>>> import numpy as np
|
|
>>> from sklearn.neural_network import BernoulliRBM
|
|
>>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
|
|
>>> model = BernoulliRBM(n_components=2)
|
|
>>> model.fit(X)
|
|
BernoulliRBM(batch_size=10, learning_rate=0.1, n_components=2, n_iter=10,
|
|
random_state=None, verbose=0)
|
|
|
|
References
|
|
----------
|
|
|
|
[1] Hinton, G. E., Osindero, S. and Teh, Y. A fast learning algorithm for
|
|
deep belief nets. Neural Computation 18, pp 1527-1554.
|
|
http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
|
|
|
|
[2] Tieleman, T. Training Restricted Boltzmann Machines using
|
|
Approximations to the Likelihood Gradient. International Conference
|
|
on Machine Learning (ICML) 2008
|
|
"""
|
|
def __init__(self, n_components=256, learning_rate=0.1, batch_size=10,
|
|
n_iter=10, verbose=0, random_state=None):
|
|
self.n_components = n_components
|
|
self.learning_rate = learning_rate
|
|
self.batch_size = batch_size
|
|
self.n_iter = n_iter
|
|
self.verbose = verbose
|
|
self.random_state = random_state
|
|
|
|
def transform(self, X):
|
|
"""Compute the hidden layer activation probabilities, P(h=1|v=X).
|
|
|
|
Parameters
|
|
----------
|
|
X : {array-like, sparse matrix} shape (n_samples, n_features)
|
|
The data to be transformed.
|
|
|
|
Returns
|
|
-------
|
|
h : array, shape (n_samples, n_components)
|
|
Latent representations of the data.
|
|
"""
|
|
check_is_fitted(self, "components_")
|
|
|
|
X = check_array(X, accept_sparse='csr', dtype=np.float64)
|
|
return self._mean_hiddens(X)
|
|
|
|
def _mean_hiddens(self, v):
|
|
"""Computes the probabilities P(h=1|v).
|
|
|
|
Parameters
|
|
----------
|
|
v : array-like, shape (n_samples, n_features)
|
|
Values of the visible layer.
|
|
|
|
Returns
|
|
-------
|
|
h : array-like, shape (n_samples, n_components)
|
|
Corresponding mean field values for the hidden layer.
|
|
"""
|
|
p = safe_sparse_dot(v, self.components_.T)
|
|
p += self.intercept_hidden_
|
|
return expit(p, out=p)
|
|
|
|
def _sample_hiddens(self, v, rng):
|
|
"""Sample from the distribution P(h|v).
|
|
|
|
Parameters
|
|
----------
|
|
v : array-like, shape (n_samples, n_features)
|
|
Values of the visible layer to sample from.
|
|
|
|
rng : RandomState
|
|
Random number generator to use.
|
|
|
|
Returns
|
|
-------
|
|
h : array-like, shape (n_samples, n_components)
|
|
Values of the hidden layer.
|
|
"""
|
|
p = self._mean_hiddens(v)
|
|
return (rng.random_sample(size=p.shape) < p)
|
|
|
|
def _sample_visibles(self, h, rng):
|
|
"""Sample from the distribution P(v|h).
|
|
|
|
Parameters
|
|
----------
|
|
h : array-like, shape (n_samples, n_components)
|
|
Values of the hidden layer to sample from.
|
|
|
|
rng : RandomState
|
|
Random number generator to use.
|
|
|
|
Returns
|
|
-------
|
|
v : array-like, shape (n_samples, n_features)
|
|
Values of the visible layer.
|
|
"""
|
|
p = np.dot(h, self.components_)
|
|
p += self.intercept_visible_
|
|
expit(p, out=p)
|
|
return (rng.random_sample(size=p.shape) < p)
|
|
|
|
def _free_energy(self, v):
|
|
"""Computes the free energy F(v) = - log sum_h exp(-E(v,h)).
|
|
|
|
Parameters
|
|
----------
|
|
v : array-like, shape (n_samples, n_features)
|
|
Values of the visible layer.
|
|
|
|
Returns
|
|
-------
|
|
free_energy : array-like, shape (n_samples,)
|
|
The value of the free energy.
|
|
"""
|
|
return (- safe_sparse_dot(v, self.intercept_visible_)
|
|
- np.logaddexp(0, safe_sparse_dot(v, self.components_.T)
|
|
+ self.intercept_hidden_).sum(axis=1))
|
|
|
|
def gibbs(self, v):
|
|
"""Perform one Gibbs sampling step.
|
|
|
|
Parameters
|
|
----------
|
|
v : array-like, shape (n_samples, n_features)
|
|
Values of the visible layer to start from.
|
|
|
|
Returns
|
|
-------
|
|
v_new : array-like, shape (n_samples, n_features)
|
|
Values of the visible layer after one Gibbs step.
|
|
"""
|
|
check_is_fitted(self, "components_")
|
|
if not hasattr(self, "random_state_"):
|
|
self.random_state_ = check_random_state(self.random_state)
|
|
h_ = self._sample_hiddens(v, self.random_state_)
|
|
v_ = self._sample_visibles(h_, self.random_state_)
|
|
|
|
return v_
|
|
|
|
def partial_fit(self, X, y=None):
|
|
"""Fit the model to the data X which should contain a partial
|
|
segment of the data.
|
|
|
|
Parameters
|
|
----------
|
|
X : array-like, shape (n_samples, n_features)
|
|
Training data.
|
|
|
|
Returns
|
|
-------
|
|
self : BernoulliRBM
|
|
The fitted model.
|
|
"""
|
|
X = check_array(X, accept_sparse='csr', dtype=np.float64)
|
|
if not hasattr(self, 'random_state_'):
|
|
self.random_state_ = check_random_state(self.random_state)
|
|
if not hasattr(self, 'components_'):
|
|
self.components_ = np.asarray(
|
|
self.random_state_.normal(
|
|
0,
|
|
0.01,
|
|
(self.n_components, X.shape[1])
|
|
),
|
|
order='F')
|
|
if not hasattr(self, 'intercept_hidden_'):
|
|
self.intercept_hidden_ = np.zeros(self.n_components, )
|
|
if not hasattr(self, 'intercept_visible_'):
|
|
self.intercept_visible_ = np.zeros(X.shape[1], )
|
|
if not hasattr(self, 'h_samples_'):
|
|
self.h_samples_ = np.zeros((self.batch_size, self.n_components))
|
|
|
|
self._fit(X, self.random_state_)
|
|
|
|
def _fit(self, v_pos, rng):
|
|
"""Inner fit for one mini-batch.
|
|
|
|
Adjust the parameters to maximize the likelihood of v using
|
|
Stochastic Maximum Likelihood (SML).
|
|
|
|
Parameters
|
|
----------
|
|
v_pos : array-like, shape (n_samples, n_features)
|
|
The data to use for training.
|
|
|
|
rng : RandomState
|
|
Random number generator to use for sampling.
|
|
"""
|
|
h_pos = self._mean_hiddens(v_pos)
|
|
v_neg = self._sample_visibles(self.h_samples_, rng)
|
|
h_neg = self._mean_hiddens(v_neg)
|
|
|
|
lr = float(self.learning_rate) / v_pos.shape[0]
|
|
update = safe_sparse_dot(v_pos.T, h_pos, dense_output=True).T
|
|
update -= np.dot(h_neg.T, v_neg)
|
|
self.components_ += lr * update
|
|
self.intercept_hidden_ += lr * (h_pos.sum(axis=0) - h_neg.sum(axis=0))
|
|
self.intercept_visible_ += lr * (np.asarray(
|
|
v_pos.sum(axis=0)).squeeze() -
|
|
v_neg.sum(axis=0))
|
|
|
|
h_neg[rng.uniform(size=h_neg.shape) < h_neg] = 1.0 # sample binomial
|
|
self.h_samples_ = np.floor(h_neg, h_neg)
|
|
|
|
def score_samples(self, X):
|
|
"""Compute the pseudo-likelihood of X.
|
|
|
|
Parameters
|
|
----------
|
|
X : {array-like, sparse matrix} shape (n_samples, n_features)
|
|
Values of the visible layer. Must be all-boolean (not checked).
|
|
|
|
Returns
|
|
-------
|
|
pseudo_likelihood : array-like, shape (n_samples,)
|
|
Value of the pseudo-likelihood (proxy for likelihood).
|
|
|
|
Notes
|
|
-----
|
|
This method is not deterministic: it computes a quantity called the
|
|
free energy on X, then on a randomly corrupted version of X, and
|
|
returns the log of the logistic function of the difference.
|
|
"""
|
|
check_is_fitted(self, "components_")
|
|
|
|
v = check_array(X, accept_sparse='csr')
|
|
rng = check_random_state(self.random_state)
|
|
|
|
# Randomly corrupt one feature in each sample in v.
|
|
ind = (np.arange(v.shape[0]),
|
|
rng.randint(0, v.shape[1], v.shape[0]))
|
|
if issparse(v):
|
|
data = -2 * v[ind] + 1
|
|
v_ = v + sp.csr_matrix((data.A.ravel(), ind), shape=v.shape)
|
|
else:
|
|
v_ = v.copy()
|
|
v_[ind] = 1 - v_[ind]
|
|
|
|
fe = self._free_energy(v)
|
|
fe_ = self._free_energy(v_)
|
|
return v.shape[1] * log_logistic(fe_ - fe)
|
|
|
|
def fit(self, X, y=None):
|
|
"""Fit the model to the data X.
|
|
|
|
Parameters
|
|
----------
|
|
X : {array-like, sparse matrix} shape (n_samples, n_features)
|
|
Training data.
|
|
|
|
Returns
|
|
-------
|
|
self : BernoulliRBM
|
|
The fitted model.
|
|
"""
|
|
X = check_array(X, accept_sparse='csr', dtype=np.float64)
|
|
n_samples = X.shape[0]
|
|
rng = check_random_state(self.random_state)
|
|
|
|
self.components_ = np.asarray(
|
|
rng.normal(0, 0.01, (self.n_components, X.shape[1])),
|
|
order='F')
|
|
self.intercept_hidden_ = np.zeros(self.n_components, )
|
|
self.intercept_visible_ = np.zeros(X.shape[1], )
|
|
self.h_samples_ = np.zeros((self.batch_size, self.n_components))
|
|
|
|
n_batches = int(np.ceil(float(n_samples) / self.batch_size))
|
|
batch_slices = list(gen_even_slices(n_batches * self.batch_size,
|
|
n_batches, n_samples))
|
|
verbose = self.verbose
|
|
begin = time.time()
|
|
for iteration in xrange(1, self.n_iter + 1):
|
|
for batch_slice in batch_slices:
|
|
self._fit(X[batch_slice], rng)
|
|
|
|
if verbose:
|
|
end = time.time()
|
|
print("[%s] Iteration %d, pseudo-likelihood = %.2f,"
|
|
" time = %.2fs"
|
|
% (type(self).__name__, iteration,
|
|
self.score_samples(X).mean(), end - begin))
|
|
begin = end
|
|
|
|
return self
|