laywerrobot/lib/python3.6/site-packages/sklearn/model_selection/tests/test_validation.py
2020-08-27 21:55:39 +02:00

1423 lines
56 KiB
Python

"""Test the validation module"""
from __future__ import division
import sys
import warnings
import tempfile
import os
from time import sleep
import numpy as np
from scipy.sparse import coo_matrix, csr_matrix
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_false
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_raise_message
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import assert_warns_message
from sklearn.utils.testing import assert_no_warnings
from sklearn.utils.testing import assert_raises_regex
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.mocking import CheckingClassifier, MockDataFrame
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_val_predict
from sklearn.model_selection import cross_validate
from sklearn.model_selection import permutation_test_score
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import LeaveOneOut
from sklearn.model_selection import LeaveOneGroupOut
from sklearn.model_selection import LeavePGroupsOut
from sklearn.model_selection import GroupKFold
from sklearn.model_selection import GroupShuffleSplit
from sklearn.model_selection import learning_curve
from sklearn.model_selection import validation_curve
from sklearn.model_selection._validation import _check_is_permutation
from sklearn.datasets import make_regression
from sklearn.datasets import load_boston
from sklearn.datasets import load_iris
from sklearn.datasets import load_digits
from sklearn.metrics import explained_variance_score
from sklearn.metrics import make_scorer
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import precision_score
from sklearn.metrics import r2_score
from sklearn.metrics.scorer import check_scoring
from sklearn.linear_model import Ridge, LogisticRegression, SGDClassifier
from sklearn.linear_model import PassiveAggressiveClassifier, RidgeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.cluster import KMeans
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline
from sklearn.externals.six.moves import cStringIO as StringIO
from sklearn.base import BaseEstimator
from sklearn.base import clone
from sklearn.multiclass import OneVsRestClassifier
from sklearn.utils import shuffle
from sklearn.datasets import make_classification
from sklearn.datasets import make_multilabel_classification
from sklearn.model_selection.tests.common import OneTimeSplitter
from sklearn.model_selection import GridSearchCV
try:
WindowsError
except NameError:
WindowsError = None
class MockImprovingEstimator(BaseEstimator):
"""Dummy classifier to test the learning curve"""
def __init__(self, n_max_train_sizes):
self.n_max_train_sizes = n_max_train_sizes
self.train_sizes = 0
self.X_subset = None
def fit(self, X_subset, y_subset=None):
self.X_subset = X_subset
self.train_sizes = X_subset.shape[0]
return self
def predict(self, X):
raise NotImplementedError
def score(self, X=None, Y=None):
# training score becomes worse (2 -> 1), test error better (0 -> 1)
if self._is_training_data(X):
return 2. - float(self.train_sizes) / self.n_max_train_sizes
else:
return float(self.train_sizes) / self.n_max_train_sizes
def _is_training_data(self, X):
return X is self.X_subset
class MockIncrementalImprovingEstimator(MockImprovingEstimator):
"""Dummy classifier that provides partial_fit"""
def __init__(self, n_max_train_sizes):
super(MockIncrementalImprovingEstimator,
self).__init__(n_max_train_sizes)
self.x = None
def _is_training_data(self, X):
return self.x in X
def partial_fit(self, X, y=None, **params):
self.train_sizes += X.shape[0]
self.x = X[0]
class MockEstimatorWithParameter(BaseEstimator):
"""Dummy classifier to test the validation curve"""
def __init__(self, param=0.5):
self.X_subset = None
self.param = param
def fit(self, X_subset, y_subset):
self.X_subset = X_subset
self.train_sizes = X_subset.shape[0]
return self
def predict(self, X):
raise NotImplementedError
def score(self, X=None, y=None):
return self.param if self._is_training_data(X) else 1 - self.param
def _is_training_data(self, X):
return X is self.X_subset
class MockEstimatorWithSingleFitCallAllowed(MockEstimatorWithParameter):
"""Dummy classifier that disallows repeated calls of fit method"""
def fit(self, X_subset, y_subset):
assert_false(
hasattr(self, 'fit_called_'),
'fit is called the second time'
)
self.fit_called_ = True
return super(type(self), self).fit(X_subset, y_subset)
def predict(self, X):
raise NotImplementedError
class MockClassifier(object):
"""Dummy classifier to test the cross-validation"""
def __init__(self, a=0, allow_nd=False):
self.a = a
self.allow_nd = allow_nd
def fit(self, X, Y=None, sample_weight=None, class_prior=None,
sparse_sample_weight=None, sparse_param=None, dummy_int=None,
dummy_str=None, dummy_obj=None, callback=None):
"""The dummy arguments are to test that this fit function can
accept non-array arguments through cross-validation, such as:
- int
- str (this is actually array-like)
- object
- function
"""
self.dummy_int = dummy_int
self.dummy_str = dummy_str
self.dummy_obj = dummy_obj
if callback is not None:
callback(self)
if self.allow_nd:
X = X.reshape(len(X), -1)
if X.ndim >= 3 and not self.allow_nd:
raise ValueError('X cannot be d')
if sample_weight is not None:
assert_true(sample_weight.shape[0] == X.shape[0],
'MockClassifier extra fit_param sample_weight.shape[0]'
' is {0}, should be {1}'.format(sample_weight.shape[0],
X.shape[0]))
if class_prior is not None:
assert_true(class_prior.shape[0] == len(np.unique(y)),
'MockClassifier extra fit_param class_prior.shape[0]'
' is {0}, should be {1}'.format(class_prior.shape[0],
len(np.unique(y))))
if sparse_sample_weight is not None:
fmt = ('MockClassifier extra fit_param sparse_sample_weight'
'.shape[0] is {0}, should be {1}')
assert_true(sparse_sample_weight.shape[0] == X.shape[0],
fmt.format(sparse_sample_weight.shape[0], X.shape[0]))
if sparse_param is not None:
fmt = ('MockClassifier extra fit_param sparse_param.shape '
'is ({0}, {1}), should be ({2}, {3})')
assert_true(sparse_param.shape == P_sparse.shape,
fmt.format(sparse_param.shape[0],
sparse_param.shape[1],
P_sparse.shape[0], P_sparse.shape[1]))
return self
def predict(self, T):
if self.allow_nd:
T = T.reshape(len(T), -1)
return T[:, 0]
def score(self, X=None, Y=None):
return 1. / (1 + np.abs(self.a))
def get_params(self, deep=False):
return {'a': self.a, 'allow_nd': self.allow_nd}
# XXX: use 2D array, since 1D X is being detected as a single sample in
# check_consistent_length
X = np.ones((10, 2))
X_sparse = coo_matrix(X)
y = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4])
# The number of samples per class needs to be > n_splits,
# for StratifiedKFold(n_splits=3)
y2 = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3, 3])
P_sparse = coo_matrix(np.eye(5))
def test_cross_val_score():
clf = MockClassifier()
for a in range(-10, 10):
clf.a = a
# Smoke test
scores = cross_val_score(clf, X, y2)
assert_array_equal(scores, clf.score(X, y2))
# test with multioutput y
multioutput_y = np.column_stack([y2, y2[::-1]])
scores = cross_val_score(clf, X_sparse, multioutput_y)
assert_array_equal(scores, clf.score(X_sparse, multioutput_y))
scores = cross_val_score(clf, X_sparse, y2)
assert_array_equal(scores, clf.score(X_sparse, y2))
# test with multioutput y
scores = cross_val_score(clf, X_sparse, multioutput_y)
assert_array_equal(scores, clf.score(X_sparse, multioutput_y))
# test with X and y as list
list_check = lambda x: isinstance(x, list)
clf = CheckingClassifier(check_X=list_check)
scores = cross_val_score(clf, X.tolist(), y2.tolist())
clf = CheckingClassifier(check_y=list_check)
scores = cross_val_score(clf, X, y2.tolist())
assert_raises(ValueError, cross_val_score, clf, X, y2, scoring="sklearn")
# test with 3d X and
X_3d = X[:, :, np.newaxis]
clf = MockClassifier(allow_nd=True)
scores = cross_val_score(clf, X_3d, y2)
clf = MockClassifier(allow_nd=False)
assert_raises(ValueError, cross_val_score, clf, X_3d, y2)
def test_cross_validate_invalid_scoring_param():
X, y = make_classification(random_state=0)
estimator = MockClassifier()
# Test the errors
error_message_regexp = ".*must be unique strings.*"
# List/tuple of callables should raise a message advising users to use
# dict of names to callables mapping
assert_raises_regex(ValueError, error_message_regexp,
cross_validate, estimator, X, y,
scoring=(make_scorer(precision_score),
make_scorer(accuracy_score)))
assert_raises_regex(ValueError, error_message_regexp,
cross_validate, estimator, X, y,
scoring=(make_scorer(precision_score),))
# So should empty lists/tuples
assert_raises_regex(ValueError, error_message_regexp + "Empty list.*",
cross_validate, estimator, X, y, scoring=())
# So should duplicated entries
assert_raises_regex(ValueError, error_message_regexp + "Duplicate.*",
cross_validate, estimator, X, y,
scoring=('f1_micro', 'f1_micro'))
# Nested Lists should raise a generic error message
assert_raises_regex(ValueError, error_message_regexp,
cross_validate, estimator, X, y,
scoring=[[make_scorer(precision_score)]])
error_message_regexp = (".*should either be.*string or callable.*for "
"single.*.*dict.*for multi.*")
# Empty dict should raise invalid scoring error
assert_raises_regex(ValueError, "An empty dict",
cross_validate, estimator, X, y, scoring=(dict()))
# And so should any other invalid entry
assert_raises_regex(ValueError, error_message_regexp,
cross_validate, estimator, X, y, scoring=5)
multiclass_scorer = make_scorer(precision_recall_fscore_support)
# Multiclass Scorers that return multiple values are not supported yet
assert_raises_regex(ValueError,
"Classification metrics can't handle a mix of "
"binary and continuous targets",
cross_validate, estimator, X, y,
scoring=multiclass_scorer)
assert_raises_regex(ValueError,
"Classification metrics can't handle a mix of "
"binary and continuous targets",
cross_validate, estimator, X, y,
scoring={"foo": multiclass_scorer})
multivalued_scorer = make_scorer(confusion_matrix)
# Multiclass Scorers that return multiple values are not supported yet
assert_raises_regex(ValueError, "scoring must return a number, got",
cross_validate, SVC(), X, y,
scoring=multivalued_scorer)
assert_raises_regex(ValueError, "scoring must return a number, got",
cross_validate, SVC(), X, y,
scoring={"foo": multivalued_scorer})
assert_raises_regex(ValueError, "'mse' is not a valid scoring value.",
cross_validate, SVC(), X, y, scoring="mse")
def test_cross_validate():
# Compute train and test mse/r2 scores
cv = KFold(n_splits=5)
# Regression
X_reg, y_reg = make_regression(n_samples=30, random_state=0)
reg = Ridge(random_state=0)
# Classification
X_clf, y_clf = make_classification(n_samples=30, random_state=0)
clf = SVC(kernel="linear", random_state=0)
for X, y, est in ((X_reg, y_reg, reg), (X_clf, y_clf, clf)):
# It's okay to evaluate regression metrics on classification too
mse_scorer = check_scoring(est, 'neg_mean_squared_error')
r2_scorer = check_scoring(est, 'r2')
train_mse_scores = []
test_mse_scores = []
train_r2_scores = []
test_r2_scores = []
for train, test in cv.split(X, y):
est = clone(reg).fit(X[train], y[train])
train_mse_scores.append(mse_scorer(est, X[train], y[train]))
train_r2_scores.append(r2_scorer(est, X[train], y[train]))
test_mse_scores.append(mse_scorer(est, X[test], y[test]))
test_r2_scores.append(r2_scorer(est, X[test], y[test]))
train_mse_scores = np.array(train_mse_scores)
test_mse_scores = np.array(test_mse_scores)
train_r2_scores = np.array(train_r2_scores)
test_r2_scores = np.array(test_r2_scores)
scores = (train_mse_scores, test_mse_scores, train_r2_scores,
test_r2_scores)
yield check_cross_validate_single_metric, est, X, y, scores
yield check_cross_validate_multi_metric, est, X, y, scores
def test_cross_validate_return_train_score_warn():
# Test that warnings are raised. Will be removed in 0.21
X, y = make_classification(random_state=0)
estimator = MockClassifier()
result = {}
for val in [False, True, 'warn']:
result[val] = assert_no_warnings(cross_validate, estimator, X, y,
return_train_score=val)
msg = (
'You are accessing a training score ({!r}), '
'which will not be available by default '
'any more in 0.21. If you need training scores, '
'please set return_train_score=True').format('train_score')
train_score = assert_warns_message(FutureWarning, msg,
result['warn'].get, 'train_score')
assert np.allclose(train_score, result[True]['train_score'])
assert 'train_score' not in result[False]
def check_cross_validate_single_metric(clf, X, y, scores):
(train_mse_scores, test_mse_scores, train_r2_scores,
test_r2_scores) = scores
# Test single metric evaluation when scoring is string or singleton list
for (return_train_score, dict_len) in ((True, 4), (False, 3)):
# Single metric passed as a string
if return_train_score:
# It must be True by default
mse_scores_dict = cross_validate(clf, X, y, cv=5,
scoring='neg_mean_squared_error')
assert_array_almost_equal(mse_scores_dict['train_score'],
train_mse_scores)
else:
mse_scores_dict = cross_validate(clf, X, y, cv=5,
scoring='neg_mean_squared_error',
return_train_score=False)
assert_true(isinstance(mse_scores_dict, dict))
assert_equal(len(mse_scores_dict), dict_len)
assert_array_almost_equal(mse_scores_dict['test_score'],
test_mse_scores)
# Single metric passed as a list
if return_train_score:
# It must be True by default
r2_scores_dict = cross_validate(clf, X, y, cv=5, scoring=['r2'])
assert_array_almost_equal(r2_scores_dict['train_r2'],
train_r2_scores)
else:
r2_scores_dict = cross_validate(clf, X, y, cv=5, scoring=['r2'],
return_train_score=False)
assert_true(isinstance(r2_scores_dict, dict))
assert_equal(len(r2_scores_dict), dict_len)
assert_array_almost_equal(r2_scores_dict['test_r2'], test_r2_scores)
def check_cross_validate_multi_metric(clf, X, y, scores):
# Test multimetric evaluation when scoring is a list / dict
(train_mse_scores, test_mse_scores, train_r2_scores,
test_r2_scores) = scores
all_scoring = (('r2', 'neg_mean_squared_error'),
{'r2': make_scorer(r2_score),
'neg_mean_squared_error': 'neg_mean_squared_error'})
keys_sans_train = set(('test_r2', 'test_neg_mean_squared_error',
'fit_time', 'score_time'))
keys_with_train = keys_sans_train.union(
set(('train_r2', 'train_neg_mean_squared_error')))
for return_train_score in (True, False):
for scoring in all_scoring:
if return_train_score:
# return_train_score must be True by default
cv_results = cross_validate(clf, X, y, cv=5, scoring=scoring)
assert_array_almost_equal(cv_results['train_r2'],
train_r2_scores)
assert_array_almost_equal(
cv_results['train_neg_mean_squared_error'],
train_mse_scores)
else:
cv_results = cross_validate(clf, X, y, cv=5, scoring=scoring,
return_train_score=False)
assert_true(isinstance(cv_results, dict))
assert_equal(set(cv_results.keys()),
keys_with_train if return_train_score
else keys_sans_train)
assert_array_almost_equal(cv_results['test_r2'], test_r2_scores)
assert_array_almost_equal(
cv_results['test_neg_mean_squared_error'], test_mse_scores)
# Make sure all the arrays are of np.ndarray type
assert type(cv_results['test_r2']) == np.ndarray
assert (type(cv_results['test_neg_mean_squared_error']) ==
np.ndarray)
assert type(cv_results['fit_time']) == np.ndarray
assert type(cv_results['score_time']) == np.ndarray
# Ensure all the times are within sane limits
assert np.all(cv_results['fit_time'] >= 0)
assert np.all(cv_results['fit_time'] < 10)
assert np.all(cv_results['score_time'] >= 0)
assert np.all(cv_results['score_time'] < 10)
def test_cross_val_score_predict_groups():
# Check if ValueError (when groups is None) propagates to cross_val_score
# and cross_val_predict
# And also check if groups is correctly passed to the cv object
X, y = make_classification(n_samples=20, n_classes=2, random_state=0)
clf = SVC(kernel="linear")
group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2), GroupKFold(),
GroupShuffleSplit()]
for cv in group_cvs:
assert_raise_message(ValueError,
"The 'groups' parameter should not be None.",
cross_val_score, estimator=clf, X=X, y=y, cv=cv)
assert_raise_message(ValueError,
"The 'groups' parameter should not be None.",
cross_val_predict, estimator=clf, X=X, y=y, cv=cv)
def test_cross_val_score_pandas():
# check cross_val_score doesn't destroy pandas dataframe
types = [(MockDataFrame, MockDataFrame)]
try:
from pandas import Series, DataFrame
types.append((Series, DataFrame))
except ImportError:
pass
for TargetType, InputFeatureType in types:
# X dataframe, y series
# 3 fold cross val is used so we need atleast 3 samples per class
X_df, y_ser = InputFeatureType(X), TargetType(y2)
check_df = lambda x: isinstance(x, InputFeatureType)
check_series = lambda x: isinstance(x, TargetType)
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
cross_val_score(clf, X_df, y_ser)
def test_cross_val_score_mask():
# test that cross_val_score works with boolean masks
svm = SVC(kernel="linear")
iris = load_iris()
X, y = iris.data, iris.target
kfold = KFold(5)
scores_indices = cross_val_score(svm, X, y, cv=kfold)
kfold = KFold(5)
cv_masks = []
for train, test in kfold.split(X, y):
mask_train = np.zeros(len(y), dtype=np.bool)
mask_test = np.zeros(len(y), dtype=np.bool)
mask_train[train] = 1
mask_test[test] = 1
cv_masks.append((train, test))
scores_masks = cross_val_score(svm, X, y, cv=cv_masks)
assert_array_equal(scores_indices, scores_masks)
def test_cross_val_score_precomputed():
# test for svm with precomputed kernel
svm = SVC(kernel="precomputed")
iris = load_iris()
X, y = iris.data, iris.target
linear_kernel = np.dot(X, X.T)
score_precomputed = cross_val_score(svm, linear_kernel, y)
svm = SVC(kernel="linear")
score_linear = cross_val_score(svm, X, y)
assert_array_almost_equal(score_precomputed, score_linear)
# test with callable
svm = SVC(kernel=lambda x, y: np.dot(x, y.T))
score_callable = cross_val_score(svm, X, y)
assert_array_almost_equal(score_precomputed, score_callable)
# Error raised for non-square X
svm = SVC(kernel="precomputed")
assert_raises(ValueError, cross_val_score, svm, X, y)
# test error is raised when the precomputed kernel is not array-like
# or sparse
assert_raises(ValueError, cross_val_score, svm,
linear_kernel.tolist(), y)
def test_cross_val_score_fit_params():
clf = MockClassifier()
n_samples = X.shape[0]
n_classes = len(np.unique(y))
W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))),
shape=(10, 1))
P_sparse = coo_matrix(np.eye(5))
DUMMY_INT = 42
DUMMY_STR = '42'
DUMMY_OBJ = object()
def assert_fit_params(clf):
# Function to test that the values are passed correctly to the
# classifier arguments for non-array type
assert_equal(clf.dummy_int, DUMMY_INT)
assert_equal(clf.dummy_str, DUMMY_STR)
assert_equal(clf.dummy_obj, DUMMY_OBJ)
fit_params = {'sample_weight': np.ones(n_samples),
'class_prior': np.ones(n_classes) / n_classes,
'sparse_sample_weight': W_sparse,
'sparse_param': P_sparse,
'dummy_int': DUMMY_INT,
'dummy_str': DUMMY_STR,
'dummy_obj': DUMMY_OBJ,
'callback': assert_fit_params}
cross_val_score(clf, X, y, fit_params=fit_params)
def test_cross_val_score_score_func():
clf = MockClassifier()
_score_func_args = []
def score_func(y_test, y_predict):
_score_func_args.append((y_test, y_predict))
return 1.0
with warnings.catch_warnings(record=True):
scoring = make_scorer(score_func)
score = cross_val_score(clf, X, y, scoring=scoring, cv=3)
assert_array_equal(score, [1.0, 1.0, 1.0])
# Test that score function is called only 3 times (for cv=3)
assert len(_score_func_args) == 3
def test_cross_val_score_errors():
class BrokenEstimator:
pass
assert_raises(TypeError, cross_val_score, BrokenEstimator(), X)
def test_cross_val_score_with_score_func_classification():
iris = load_iris()
clf = SVC(kernel='linear')
# Default score (should be the accuracy score)
scores = cross_val_score(clf, iris.data, iris.target, cv=5)
assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2)
# Correct classification score (aka. zero / one score) - should be the
# same as the default estimator score
zo_scores = cross_val_score(clf, iris.data, iris.target,
scoring="accuracy", cv=5)
assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2)
# F1 score (class are balanced so f1_score should be equal to zero/one
# score
f1_scores = cross_val_score(clf, iris.data, iris.target,
scoring="f1_weighted", cv=5)
assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2)
def test_cross_val_score_with_score_func_regression():
X, y = make_regression(n_samples=30, n_features=20, n_informative=5,
random_state=0)
reg = Ridge()
# Default score of the Ridge regression estimator
scores = cross_val_score(reg, X, y, cv=5)
assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
# R2 score (aka. determination coefficient) - should be the
# same as the default estimator score
r2_scores = cross_val_score(reg, X, y, scoring="r2", cv=5)
assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
# Mean squared error; this is a loss function, so "scores" are negative
neg_mse_scores = cross_val_score(reg, X, y, cv=5,
scoring="neg_mean_squared_error")
expected_neg_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99])
assert_array_almost_equal(neg_mse_scores, expected_neg_mse, 2)
# Explained variance
scoring = make_scorer(explained_variance_score)
ev_scores = cross_val_score(reg, X, y, cv=5, scoring=scoring)
assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
def test_permutation_score():
iris = load_iris()
X = iris.data
X_sparse = coo_matrix(X)
y = iris.target
svm = SVC(kernel='linear')
cv = StratifiedKFold(2)
score, scores, pvalue = permutation_test_score(
svm, X, y, n_permutations=30, cv=cv, scoring="accuracy")
assert_greater(score, 0.9)
assert_almost_equal(pvalue, 0.0, 1)
score_group, _, pvalue_group = permutation_test_score(
svm, X, y, n_permutations=30, cv=cv, scoring="accuracy",
groups=np.ones(y.size), random_state=0)
assert_true(score_group == score)
assert_true(pvalue_group == pvalue)
# check that we obtain the same results with a sparse representation
svm_sparse = SVC(kernel='linear')
cv_sparse = StratifiedKFold(2)
score_group, _, pvalue_group = permutation_test_score(
svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse,
scoring="accuracy", groups=np.ones(y.size), random_state=0)
assert_true(score_group == score)
assert_true(pvalue_group == pvalue)
# test with custom scoring object
def custom_score(y_true, y_pred):
return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) /
y_true.shape[0])
scorer = make_scorer(custom_score)
score, _, pvalue = permutation_test_score(
svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0)
assert_almost_equal(score, .93, 2)
assert_almost_equal(pvalue, 0.01, 3)
# set random y
y = np.mod(np.arange(len(y)), 3)
score, scores, pvalue = permutation_test_score(
svm, X, y, n_permutations=30, cv=cv, scoring="accuracy")
assert_less(score, 0.5)
assert_greater(pvalue, 0.2)
def test_permutation_test_score_allow_nans():
# Check that permutation_test_score allows input data with NaNs
X = np.arange(200, dtype=np.float64).reshape(10, -1)
X[2, :] = np.nan
y = np.repeat([0, 1], X.shape[0] / 2)
p = Pipeline([
('imputer', Imputer(strategy='mean', missing_values='NaN')),
('classifier', MockClassifier()),
])
permutation_test_score(p, X, y, cv=5)
def test_cross_val_score_allow_nans():
# Check that cross_val_score allows input data with NaNs
X = np.arange(200, dtype=np.float64).reshape(10, -1)
X[2, :] = np.nan
y = np.repeat([0, 1], X.shape[0] / 2)
p = Pipeline([
('imputer', Imputer(strategy='mean', missing_values='NaN')),
('classifier', MockClassifier()),
])
cross_val_score(p, X, y, cv=5)
def test_cross_val_score_multilabel():
X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1],
[-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]])
y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1],
[0, 1], [1, 0], [1, 1], [1, 0], [0, 0]])
clf = KNeighborsClassifier(n_neighbors=1)
scoring_micro = make_scorer(precision_score, average='micro')
scoring_macro = make_scorer(precision_score, average='macro')
scoring_samples = make_scorer(precision_score, average='samples')
score_micro = cross_val_score(clf, X, y, scoring=scoring_micro, cv=5)
score_macro = cross_val_score(clf, X, y, scoring=scoring_macro, cv=5)
score_samples = cross_val_score(clf, X, y, scoring=scoring_samples, cv=5)
assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3])
assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4])
assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4])
def test_cross_val_predict():
boston = load_boston()
X, y = boston.data, boston.target
cv = KFold()
est = Ridge()
# Naive loop (should be same as cross_val_predict):
preds2 = np.zeros_like(y)
for train, test in cv.split(X, y):
est.fit(X[train], y[train])
preds2[test] = est.predict(X[test])
preds = cross_val_predict(est, X, y, cv=cv)
assert_array_almost_equal(preds, preds2)
preds = cross_val_predict(est, X, y)
assert_equal(len(preds), len(y))
cv = LeaveOneOut()
preds = cross_val_predict(est, X, y, cv=cv)
assert_equal(len(preds), len(y))
Xsp = X.copy()
Xsp *= (Xsp > np.median(Xsp))
Xsp = coo_matrix(Xsp)
preds = cross_val_predict(est, Xsp, y)
assert_array_almost_equal(len(preds), len(y))
preds = cross_val_predict(KMeans(), X)
assert_equal(len(preds), len(y))
class BadCV():
def split(self, X, y=None, groups=None):
for i in range(4):
yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8])
assert_raises(ValueError, cross_val_predict, est, X, y, cv=BadCV())
X, y = load_iris(return_X_y=True)
warning_message = ('Number of classes in training fold (2) does '
'not match total number of classes (3). '
'Results may not be appropriate for your use case.')
assert_warns_message(RuntimeWarning, warning_message,
cross_val_predict, LogisticRegression(),
X, y, method='predict_proba', cv=KFold(2))
def test_cross_val_predict_decision_function_shape():
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
preds = cross_val_predict(LogisticRegression(), X, y,
method='decision_function')
assert_equal(preds.shape, (50,))
X, y = load_iris(return_X_y=True)
preds = cross_val_predict(LogisticRegression(), X, y,
method='decision_function')
assert_equal(preds.shape, (150, 3))
# This specifically tests imbalanced splits for binary
# classification with decision_function. This is only
# applicable to classifiers that can be fit on a single
# class.
X = X[:100]
y = y[:100]
assert_raise_message(ValueError,
'Only 1 class/es in training fold, this'
' is not supported for decision_function'
' with imbalanced folds. To fix '
'this, use a cross-validation technique '
'resulting in properly stratified folds',
cross_val_predict, RidgeClassifier(), X, y,
method='decision_function', cv=KFold(2))
X, y = load_digits(return_X_y=True)
est = SVC(kernel='linear', decision_function_shape='ovo')
preds = cross_val_predict(est,
X, y,
method='decision_function')
assert_equal(preds.shape, (1797, 45))
ind = np.argsort(y)
X, y = X[ind], y[ind]
assert_raises_regex(ValueError,
'Output shape \(599L?, 21L?\) of decision_function '
'does not match number of classes \(7\) in fold. '
'Irregular decision_function .*',
cross_val_predict, est, X, y,
cv=KFold(n_splits=3), method='decision_function')
def test_cross_val_predict_predict_proba_shape():
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
preds = cross_val_predict(LogisticRegression(), X, y,
method='predict_proba')
assert_equal(preds.shape, (50, 2))
X, y = load_iris(return_X_y=True)
preds = cross_val_predict(LogisticRegression(), X, y,
method='predict_proba')
assert_equal(preds.shape, (150, 3))
def test_cross_val_predict_predict_log_proba_shape():
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
preds = cross_val_predict(LogisticRegression(), X, y,
method='predict_log_proba')
assert_equal(preds.shape, (50, 2))
X, y = load_iris(return_X_y=True)
preds = cross_val_predict(LogisticRegression(), X, y,
method='predict_log_proba')
assert_equal(preds.shape, (150, 3))
def test_cross_val_predict_input_types():
iris = load_iris()
X, y = iris.data, iris.target
X_sparse = coo_matrix(X)
multioutput_y = np.column_stack([y, y[::-1]])
clf = Ridge(fit_intercept=False, random_state=0)
# 3 fold cv is used --> atleast 3 samples per class
# Smoke test
predictions = cross_val_predict(clf, X, y)
assert_equal(predictions.shape, (150,))
# test with multioutput y
predictions = cross_val_predict(clf, X_sparse, multioutput_y)
assert_equal(predictions.shape, (150, 2))
predictions = cross_val_predict(clf, X_sparse, y)
assert_array_equal(predictions.shape, (150,))
# test with multioutput y
predictions = cross_val_predict(clf, X_sparse, multioutput_y)
assert_array_equal(predictions.shape, (150, 2))
# test with X and y as list
list_check = lambda x: isinstance(x, list)
clf = CheckingClassifier(check_X=list_check)
predictions = cross_val_predict(clf, X.tolist(), y.tolist())
clf = CheckingClassifier(check_y=list_check)
predictions = cross_val_predict(clf, X, y.tolist())
# test with X and y as list and non empty method
predictions = cross_val_predict(LogisticRegression(), X.tolist(),
y.tolist(), method='decision_function')
predictions = cross_val_predict(LogisticRegression(), X,
y.tolist(), method='decision_function')
# test with 3d X and
X_3d = X[:, :, np.newaxis]
check_3d = lambda x: x.ndim == 3
clf = CheckingClassifier(check_X=check_3d)
predictions = cross_val_predict(clf, X_3d, y)
assert_array_equal(predictions.shape, (150,))
def test_cross_val_predict_pandas():
# check cross_val_score doesn't destroy pandas dataframe
types = [(MockDataFrame, MockDataFrame)]
try:
from pandas import Series, DataFrame
types.append((Series, DataFrame))
except ImportError:
pass
for TargetType, InputFeatureType in types:
# X dataframe, y series
X_df, y_ser = InputFeatureType(X), TargetType(y2)
check_df = lambda x: isinstance(x, InputFeatureType)
check_series = lambda x: isinstance(x, TargetType)
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
cross_val_predict(clf, X_df, y_ser)
def test_cross_val_score_sparse_fit_params():
iris = load_iris()
X, y = iris.data, iris.target
clf = MockClassifier()
fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))}
a = cross_val_score(clf, X, y, fit_params=fit_params)
assert_array_equal(a, np.ones(3))
def test_learning_curve():
n_samples = 30
n_splits = 3
X, y = make_classification(n_samples=n_samples, n_features=1,
n_informative=1, n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockImprovingEstimator(n_samples * ((n_splits - 1) / n_splits))
for shuffle_train in [False, True]:
with warnings.catch_warnings(record=True) as w:
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=KFold(n_splits=n_splits),
train_sizes=np.linspace(0.1, 1.0, 10),
shuffle=shuffle_train)
if len(w) > 0:
raise RuntimeError("Unexpected warning: %r" % w[0].message)
assert_equal(train_scores.shape, (10, 3))
assert_equal(test_scores.shape, (10, 3))
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
assert_array_almost_equal(train_scores.mean(axis=1),
np.linspace(1.9, 1.0, 10))
assert_array_almost_equal(test_scores.mean(axis=1),
np.linspace(0.1, 1.0, 10))
# Test a custom cv splitter that can iterate only once
with warnings.catch_warnings(record=True) as w:
train_sizes2, train_scores2, test_scores2 = learning_curve(
estimator, X, y,
cv=OneTimeSplitter(n_splits=n_splits, n_samples=n_samples),
train_sizes=np.linspace(0.1, 1.0, 10),
shuffle=shuffle_train)
if len(w) > 0:
raise RuntimeError("Unexpected warning: %r" % w[0].message)
assert_array_almost_equal(train_scores2, train_scores)
assert_array_almost_equal(test_scores2, test_scores)
def test_learning_curve_unsupervised():
X, _ = make_classification(n_samples=30, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockImprovingEstimator(20)
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10))
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
assert_array_almost_equal(train_scores.mean(axis=1),
np.linspace(1.9, 1.0, 10))
assert_array_almost_equal(test_scores.mean(axis=1),
np.linspace(0.1, 1.0, 10))
def test_learning_curve_verbose():
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockImprovingEstimator(20)
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
train_sizes, train_scores, test_scores = \
learning_curve(estimator, X, y, cv=3, verbose=1)
finally:
out = sys.stdout.getvalue()
sys.stdout.close()
sys.stdout = old_stdout
assert("[learning_curve]" in out)
def test_learning_curve_incremental_learning_not_possible():
X, y = make_classification(n_samples=2, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
# The mockup does not have partial_fit()
estimator = MockImprovingEstimator(1)
assert_raises(ValueError, learning_curve, estimator, X, y,
exploit_incremental_learning=True)
def test_learning_curve_incremental_learning():
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockIncrementalImprovingEstimator(20)
for shuffle_train in [False, True]:
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=3, exploit_incremental_learning=True,
train_sizes=np.linspace(0.1, 1.0, 10), shuffle=shuffle_train)
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
assert_array_almost_equal(train_scores.mean(axis=1),
np.linspace(1.9, 1.0, 10))
assert_array_almost_equal(test_scores.mean(axis=1),
np.linspace(0.1, 1.0, 10))
def test_learning_curve_incremental_learning_unsupervised():
X, _ = make_classification(n_samples=30, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockIncrementalImprovingEstimator(20)
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y=None, cv=3, exploit_incremental_learning=True,
train_sizes=np.linspace(0.1, 1.0, 10))
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
assert_array_almost_equal(train_scores.mean(axis=1),
np.linspace(1.9, 1.0, 10))
assert_array_almost_equal(test_scores.mean(axis=1),
np.linspace(0.1, 1.0, 10))
def test_learning_curve_batch_and_incremental_learning_are_equal():
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
train_sizes = np.linspace(0.2, 1.0, 5)
estimator = PassiveAggressiveClassifier(max_iter=1, tol=None,
shuffle=False)
train_sizes_inc, train_scores_inc, test_scores_inc = \
learning_curve(
estimator, X, y, train_sizes=train_sizes,
cv=3, exploit_incremental_learning=True)
train_sizes_batch, train_scores_batch, test_scores_batch = \
learning_curve(
estimator, X, y, cv=3, train_sizes=train_sizes,
exploit_incremental_learning=False)
assert_array_equal(train_sizes_inc, train_sizes_batch)
assert_array_almost_equal(train_scores_inc.mean(axis=1),
train_scores_batch.mean(axis=1))
assert_array_almost_equal(test_scores_inc.mean(axis=1),
test_scores_batch.mean(axis=1))
def test_learning_curve_n_sample_range_out_of_bounds():
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockImprovingEstimator(20)
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
train_sizes=[0, 1])
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
train_sizes=[0.0, 1.0])
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
train_sizes=[0.1, 1.1])
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
train_sizes=[0, 20])
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
train_sizes=[1, 21])
def test_learning_curve_remove_duplicate_sample_sizes():
X, y = make_classification(n_samples=3, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockImprovingEstimator(2)
train_sizes, _, _ = assert_warns(
RuntimeWarning, learning_curve, estimator, X, y, cv=3,
train_sizes=np.linspace(0.33, 1.0, 3))
assert_array_equal(train_sizes, [1, 2])
def test_learning_curve_with_boolean_indices():
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockImprovingEstimator(20)
cv = KFold(n_splits=3)
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10))
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
assert_array_almost_equal(train_scores.mean(axis=1),
np.linspace(1.9, 1.0, 10))
assert_array_almost_equal(test_scores.mean(axis=1),
np.linspace(0.1, 1.0, 10))
def test_learning_curve_with_shuffle():
# Following test case was designed this way to verify the code
# changes made in pull request: #7506.
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [11, 12], [13, 14], [15, 16],
[17, 18], [19, 20], [7, 8], [9, 10], [11, 12], [13, 14],
[15, 16], [17, 18]])
y = np.array([1, 1, 1, 2, 3, 4, 1, 1, 2, 3, 4, 1, 2, 3, 4])
groups = np.array([1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 4, 4, 4, 4])
# Splits on these groups fail without shuffle as the first iteration
# of the learning curve doesn't contain label 4 in the training set.
estimator = PassiveAggressiveClassifier(max_iter=5, tol=None,
shuffle=False)
cv = GroupKFold(n_splits=2)
train_sizes_batch, train_scores_batch, test_scores_batch = learning_curve(
estimator, X, y, cv=cv, n_jobs=1, train_sizes=np.linspace(0.3, 1.0, 3),
groups=groups, shuffle=True, random_state=2)
assert_array_almost_equal(train_scores_batch.mean(axis=1),
np.array([0.75, 0.3, 0.36111111]))
assert_array_almost_equal(test_scores_batch.mean(axis=1),
np.array([0.36111111, 0.25, 0.25]))
assert_raises(ValueError, learning_curve, estimator, X, y, cv=cv, n_jobs=1,
train_sizes=np.linspace(0.3, 1.0, 3), groups=groups)
train_sizes_inc, train_scores_inc, test_scores_inc = learning_curve(
estimator, X, y, cv=cv, n_jobs=1, train_sizes=np.linspace(0.3, 1.0, 3),
groups=groups, shuffle=True, random_state=2,
exploit_incremental_learning=True)
assert_array_almost_equal(train_scores_inc.mean(axis=1),
train_scores_batch.mean(axis=1))
assert_array_almost_equal(test_scores_inc.mean(axis=1),
test_scores_batch.mean(axis=1))
def test_validation_curve():
X, y = make_classification(n_samples=2, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
param_range = np.linspace(0, 1, 10)
with warnings.catch_warnings(record=True) as w:
train_scores, test_scores = validation_curve(
MockEstimatorWithParameter(), X, y, param_name="param",
param_range=param_range, cv=2
)
if len(w) > 0:
raise RuntimeError("Unexpected warning: %r" % w[0].message)
assert_array_almost_equal(train_scores.mean(axis=1), param_range)
assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
def test_validation_curve_clone_estimator():
X, y = make_classification(n_samples=2, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
param_range = np.linspace(1, 0, 10)
_, _ = validation_curve(
MockEstimatorWithSingleFitCallAllowed(), X, y,
param_name="param", param_range=param_range, cv=2
)
def test_validation_curve_cv_splits_consistency():
n_samples = 100
n_splits = 5
X, y = make_classification(n_samples=100, random_state=0)
scores1 = validation_curve(SVC(kernel='linear', random_state=0), X, y,
'C', [0.1, 0.1, 0.2, 0.2],
cv=OneTimeSplitter(n_splits=n_splits,
n_samples=n_samples))
# The OneTimeSplitter is a non-re-entrant cv splitter. Unless, the
# `split` is called for each parameter, the following should produce
# identical results for param setting 1 and param setting 2 as both have
# the same C value.
assert_array_almost_equal(*np.vsplit(np.hstack(scores1)[(0, 2, 1, 3), :],
2))
scores2 = validation_curve(SVC(kernel='linear', random_state=0), X, y,
'C', [0.1, 0.1, 0.2, 0.2],
cv=KFold(n_splits=n_splits, shuffle=True))
# For scores2, compare the 1st and 2nd parameter's scores
# (Since the C value for 1st two param setting is 0.1, they must be
# consistent unless the train test folds differ between the param settings)
assert_array_almost_equal(*np.vsplit(np.hstack(scores2)[(0, 2, 1, 3), :],
2))
scores3 = validation_curve(SVC(kernel='linear', random_state=0), X, y,
'C', [0.1, 0.1, 0.2, 0.2],
cv=KFold(n_splits=n_splits))
# OneTimeSplitter is basically unshuffled KFold(n_splits=5). Sanity check.
assert_array_almost_equal(np.array(scores3), np.array(scores1))
def test_check_is_permutation():
rng = np.random.RandomState(0)
p = np.arange(100)
rng.shuffle(p)
assert_true(_check_is_permutation(p, 100))
assert_false(_check_is_permutation(np.delete(p, 23), 100))
p[0] = 23
assert_false(_check_is_permutation(p, 100))
# Check if the additional duplicate indices are caught
assert_false(_check_is_permutation(np.hstack((p, 0)), 100))
def test_cross_val_predict_sparse_prediction():
# check that cross_val_predict gives same result for sparse and dense input
X, y = make_multilabel_classification(n_classes=2, n_labels=1,
allow_unlabeled=False,
return_indicator=True,
random_state=1)
X_sparse = csr_matrix(X)
y_sparse = csr_matrix(y)
classif = OneVsRestClassifier(SVC(kernel='linear'))
preds = cross_val_predict(classif, X, y, cv=10)
preds_sparse = cross_val_predict(classif, X_sparse, y_sparse, cv=10)
preds_sparse = preds_sparse.toarray()
assert_array_almost_equal(preds_sparse, preds)
def check_cross_val_predict_with_method(est):
iris = load_iris()
X, y = iris.data, iris.target
X, y = shuffle(X, y, random_state=0)
classes = len(set(y))
kfold = KFold()
methods = ['decision_function', 'predict_proba', 'predict_log_proba']
for method in methods:
predictions = cross_val_predict(est, X, y, method=method)
assert_equal(len(predictions), len(y))
expected_predictions = np.zeros([len(y), classes])
func = getattr(est, method)
# Naive loop (should be same as cross_val_predict):
for train, test in kfold.split(X, y):
est.fit(X[train], y[train])
expected_predictions[test] = func(X[test])
predictions = cross_val_predict(est, X, y, method=method,
cv=kfold)
assert_array_almost_equal(expected_predictions, predictions)
# Test alternative representations of y
predictions_y1 = cross_val_predict(est, X, y + 1, method=method,
cv=kfold)
assert_array_equal(predictions, predictions_y1)
predictions_y2 = cross_val_predict(est, X, y - 2, method=method,
cv=kfold)
assert_array_equal(predictions, predictions_y2)
predictions_ystr = cross_val_predict(est, X, y.astype('str'),
method=method, cv=kfold)
assert_array_equal(predictions, predictions_ystr)
def test_cross_val_predict_with_method():
check_cross_val_predict_with_method(LogisticRegression())
def test_cross_val_predict_method_checking():
# Regression test for issue #9639. Tests that cross_val_predict does not
# check estimator methods (e.g. predict_proba) before fitting
est = SGDClassifier(loss='log', random_state=2)
check_cross_val_predict_with_method(est)
def test_gridsearchcv_cross_val_predict_with_method():
est = GridSearchCV(LogisticRegression(random_state=42),
{'C': [0.1, 1]},
cv=2)
check_cross_val_predict_with_method(est)
def get_expected_predictions(X, y, cv, classes, est, method):
expected_predictions = np.zeros([len(y), classes])
func = getattr(est, method)
for train, test in cv.split(X, y):
est.fit(X[train], y[train])
expected_predictions_ = func(X[test])
# To avoid 2 dimensional indexing
if method is 'predict_proba':
exp_pred_test = np.zeros((len(test), classes))
else:
exp_pred_test = np.full((len(test), classes),
np.finfo(expected_predictions.dtype).min)
exp_pred_test[:, est.classes_] = expected_predictions_
expected_predictions[test] = exp_pred_test
return expected_predictions
def test_cross_val_predict_class_subset():
X = np.arange(200).reshape(100, 2)
y = np.array([x//10 for x in range(100)])
classes = 10
kfold3 = KFold(n_splits=3)
kfold4 = KFold(n_splits=4)
le = LabelEncoder()
methods = ['decision_function', 'predict_proba', 'predict_log_proba']
for method in methods:
est = LogisticRegression()
# Test with n_splits=3
predictions = cross_val_predict(est, X, y, method=method,
cv=kfold3)
# Runs a naive loop (should be same as cross_val_predict):
expected_predictions = get_expected_predictions(X, y, kfold3, classes,
est, method)
assert_array_almost_equal(expected_predictions, predictions)
# Test with n_splits=4
predictions = cross_val_predict(est, X, y, method=method,
cv=kfold4)
expected_predictions = get_expected_predictions(X, y, kfold4, classes,
est, method)
assert_array_almost_equal(expected_predictions, predictions)
# Testing unordered labels
y = shuffle(np.repeat(range(10), 10), random_state=0)
predictions = cross_val_predict(est, X, y, method=method,
cv=kfold3)
y = le.fit_transform(y)
expected_predictions = get_expected_predictions(X, y, kfold3, classes,
est, method)
assert_array_almost_equal(expected_predictions, predictions)
def test_score_memmap():
# Ensure a scalar score of memmap type is accepted
iris = load_iris()
X, y = iris.data, iris.target
clf = MockClassifier()
tf = tempfile.NamedTemporaryFile(mode='wb', delete=False)
tf.write(b'Hello world!!!!!')
tf.close()
scores = np.memmap(tf.name, dtype=np.float64)
score = np.memmap(tf.name, shape=(), mode='r', dtype=np.float64)
try:
cross_val_score(clf, X, y, scoring=lambda est, X, y: score)
# non-scalar should still fail
assert_raises(ValueError, cross_val_score, clf, X, y,
scoring=lambda est, X, y: scores)
finally:
# Best effort to release the mmap file handles before deleting the
# backing file under Windows
scores, score = None, None
for _ in range(3):
try:
os.unlink(tf.name)
break
except WindowsError:
sleep(1.)
def test_permutation_test_score_pandas():
# check permutation_test_score doesn't destroy pandas dataframe
types = [(MockDataFrame, MockDataFrame)]
try:
from pandas import Series, DataFrame
types.append((Series, DataFrame))
except ImportError:
pass
for TargetType, InputFeatureType in types:
# X dataframe, y series
iris = load_iris()
X, y = iris.data, iris.target
X_df, y_ser = InputFeatureType(X), TargetType(y)
check_df = lambda x: isinstance(x, InputFeatureType)
check_series = lambda x: isinstance(x, TargetType)
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
permutation_test_score(clf, X_df, y_ser)