61 lines
1.8 KiB
Python
61 lines
1.8 KiB
Python
import numpy as np
|
|
from numpy.testing import assert_array_almost_equal
|
|
|
|
from sklearn.manifold import mds
|
|
from sklearn.utils.testing import assert_raises
|
|
|
|
|
|
def test_smacof():
|
|
# test metric smacof using the data of "Modern Multidimensional Scaling",
|
|
# Borg & Groenen, p 154
|
|
sim = np.array([[0, 5, 3, 4],
|
|
[5, 0, 2, 2],
|
|
[3, 2, 0, 1],
|
|
[4, 2, 1, 0]])
|
|
Z = np.array([[-.266, -.539],
|
|
[.451, .252],
|
|
[.016, -.238],
|
|
[-.200, .524]])
|
|
X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1)
|
|
X_true = np.array([[-1.415, -2.471],
|
|
[1.633, 1.107],
|
|
[.249, -.067],
|
|
[-.468, 1.431]])
|
|
assert_array_almost_equal(X, X_true, decimal=3)
|
|
|
|
|
|
def test_smacof_error():
|
|
# Not symmetric similarity matrix:
|
|
sim = np.array([[0, 5, 9, 4],
|
|
[5, 0, 2, 2],
|
|
[3, 2, 0, 1],
|
|
[4, 2, 1, 0]])
|
|
|
|
assert_raises(ValueError, mds.smacof, sim)
|
|
|
|
# Not squared similarity matrix:
|
|
sim = np.array([[0, 5, 9, 4],
|
|
[5, 0, 2, 2],
|
|
[4, 2, 1, 0]])
|
|
|
|
assert_raises(ValueError, mds.smacof, sim)
|
|
|
|
# init not None and not correct format:
|
|
sim = np.array([[0, 5, 3, 4],
|
|
[5, 0, 2, 2],
|
|
[3, 2, 0, 1],
|
|
[4, 2, 1, 0]])
|
|
|
|
Z = np.array([[-.266, -.539],
|
|
[.016, -.238],
|
|
[-.200, .524]])
|
|
assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1)
|
|
|
|
|
|
def test_MDS():
|
|
sim = np.array([[0, 5, 3, 4],
|
|
[5, 0, 2, 2],
|
|
[3, 2, 0, 1],
|
|
[4, 2, 1, 0]])
|
|
mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed")
|
|
mds_clf.fit(sim)
|