40 lines
1.4 KiB
Python
40 lines
1.4 KiB
Python
"""
|
|
The :mod:`sklearn.decomposition` module includes matrix decomposition
|
|
algorithms, including among others PCA, NMF or ICA. Most of the algorithms of
|
|
this module can be regarded as dimensionality reduction techniques.
|
|
"""
|
|
|
|
from .nmf import NMF, non_negative_factorization
|
|
from .pca import PCA, RandomizedPCA
|
|
from .incremental_pca import IncrementalPCA
|
|
from .kernel_pca import KernelPCA
|
|
from .sparse_pca import SparsePCA, MiniBatchSparsePCA
|
|
from .truncated_svd import TruncatedSVD
|
|
from .fastica_ import FastICA, fastica
|
|
from .dict_learning import (dict_learning, dict_learning_online, sparse_encode,
|
|
DictionaryLearning, MiniBatchDictionaryLearning,
|
|
SparseCoder)
|
|
from .factor_analysis import FactorAnalysis
|
|
from ..utils.extmath import randomized_svd
|
|
from .online_lda import LatentDirichletAllocation
|
|
|
|
__all__ = ['DictionaryLearning',
|
|
'FastICA',
|
|
'IncrementalPCA',
|
|
'KernelPCA',
|
|
'MiniBatchDictionaryLearning',
|
|
'MiniBatchSparsePCA',
|
|
'NMF',
|
|
'PCA',
|
|
'RandomizedPCA',
|
|
'SparseCoder',
|
|
'SparsePCA',
|
|
'dict_learning',
|
|
'dict_learning_online',
|
|
'fastica',
|
|
'non_negative_factorization',
|
|
'randomized_svd',
|
|
'sparse_encode',
|
|
'FactorAnalysis',
|
|
'TruncatedSVD',
|
|
'LatentDirichletAllocation']
|