34 lines
1.1 KiB
Python
34 lines
1.1 KiB
Python
"""
|
|
The :mod:`sklearn.covariance` module includes methods and algorithms to
|
|
robustly estimate the covariance of features given a set of points. The
|
|
precision matrix defined as the inverse of the covariance is also estimated.
|
|
Covariance estimation is closely related to the theory of Gaussian Graphical
|
|
Models.
|
|
"""
|
|
|
|
from .empirical_covariance_ import empirical_covariance, EmpiricalCovariance, \
|
|
log_likelihood
|
|
from .shrunk_covariance_ import shrunk_covariance, ShrunkCovariance, \
|
|
ledoit_wolf, ledoit_wolf_shrinkage, \
|
|
LedoitWolf, oas, OAS
|
|
from .robust_covariance import fast_mcd, MinCovDet
|
|
from .graph_lasso_ import graph_lasso, GraphLasso, GraphLassoCV
|
|
from .outlier_detection import EllipticEnvelope
|
|
|
|
|
|
__all__ = ['EllipticEnvelope',
|
|
'EmpiricalCovariance',
|
|
'GraphLasso',
|
|
'GraphLassoCV',
|
|
'LedoitWolf',
|
|
'MinCovDet',
|
|
'OAS',
|
|
'ShrunkCovariance',
|
|
'empirical_covariance',
|
|
'fast_mcd',
|
|
'graph_lasso',
|
|
'ledoit_wolf',
|
|
'ledoit_wolf_shrinkage',
|
|
'log_likelihood',
|
|
'oas',
|
|
'shrunk_covariance']
|