laywerrobot/lib/python3.6/site-packages/scipy/sparse/linalg/_expm_multiply.py
2020-08-27 21:55:39 +02:00

703 lines
21 KiB
Python

"""Compute the action of the matrix exponential.
"""
from __future__ import division, print_function, absolute_import
import numpy as np
import scipy.linalg
import scipy.sparse.linalg
from scipy.sparse.linalg import LinearOperator, aslinearoperator
__all__ = ['expm_multiply']
def _exact_inf_norm(A):
# A compatibility function which should eventually disappear.
if scipy.sparse.isspmatrix(A):
return max(abs(A).sum(axis=1).flat)
else:
return np.linalg.norm(A, np.inf)
def _exact_1_norm(A):
# A compatibility function which should eventually disappear.
if scipy.sparse.isspmatrix(A):
return max(abs(A).sum(axis=0).flat)
else:
return np.linalg.norm(A, 1)
def _trace(A):
# A compatibility function which should eventually disappear.
if scipy.sparse.isspmatrix(A):
return A.diagonal().sum()
else:
return np.trace(A)
def _ident_like(A):
# A compatibility function which should eventually disappear.
if scipy.sparse.isspmatrix(A):
return scipy.sparse.construct.eye(A.shape[0], A.shape[1],
dtype=A.dtype, format=A.format)
else:
return np.eye(A.shape[0], A.shape[1], dtype=A.dtype)
def expm_multiply(A, B, start=None, stop=None, num=None, endpoint=None):
"""
Compute the action of the matrix exponential of A on B.
Parameters
----------
A : transposable linear operator
The operator whose exponential is of interest.
B : ndarray
The matrix or vector to be multiplied by the matrix exponential of A.
start : scalar, optional
The starting time point of the sequence.
stop : scalar, optional
The end time point of the sequence, unless `endpoint` is set to False.
In that case, the sequence consists of all but the last of ``num + 1``
evenly spaced time points, so that `stop` is excluded.
Note that the step size changes when `endpoint` is False.
num : int, optional
Number of time points to use.
endpoint : bool, optional
If True, `stop` is the last time point. Otherwise, it is not included.
Returns
-------
expm_A_B : ndarray
The result of the action :math:`e^{t_k A} B`.
Notes
-----
The optional arguments defining the sequence of evenly spaced time points
are compatible with the arguments of `numpy.linspace`.
The output ndarray shape is somewhat complicated so I explain it here.
The ndim of the output could be either 1, 2, or 3.
It would be 1 if you are computing the expm action on a single vector
at a single time point.
It would be 2 if you are computing the expm action on a vector
at multiple time points, or if you are computing the expm action
on a matrix at a single time point.
It would be 3 if you want the action on a matrix with multiple
columns at multiple time points.
If multiple time points are requested, expm_A_B[0] will always
be the action of the expm at the first time point,
regardless of whether the action is on a vector or a matrix.
References
----------
.. [1] Awad H. Al-Mohy and Nicholas J. Higham (2011)
"Computing the Action of the Matrix Exponential,
with an Application to Exponential Integrators."
SIAM Journal on Scientific Computing,
33 (2). pp. 488-511. ISSN 1064-8275
http://eprints.ma.man.ac.uk/1591/
.. [2] Nicholas J. Higham and Awad H. Al-Mohy (2010)
"Computing Matrix Functions."
Acta Numerica,
19. 159-208. ISSN 0962-4929
http://eprints.ma.man.ac.uk/1451/
Examples
--------
>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import expm, expm_multiply
>>> A = csc_matrix([[1, 0], [0, 1]])
>>> A.todense()
matrix([[1, 0],
[0, 1]], dtype=int64)
>>> B = np.array([np.exp(-1.), np.exp(-2.)])
>>> B
array([ 0.36787944, 0.13533528])
>>> expm_multiply(A, B, start=1, stop=2, num=3, endpoint=True)
array([[ 1. , 0.36787944],
[ 1.64872127, 0.60653066],
[ 2.71828183, 1. ]])
>>> expm(A).dot(B) # Verify 1st timestep
array([ 1. , 0.36787944])
>>> expm(1.5*A).dot(B) # Verify 2nd timestep
array([ 1.64872127, 0.60653066])
>>> expm(2*A).dot(B) # Verify 3rd timestep
array([ 2.71828183, 1. ])
"""
if all(arg is None for arg in (start, stop, num, endpoint)):
X = _expm_multiply_simple(A, B)
else:
X, status = _expm_multiply_interval(A, B, start, stop, num, endpoint)
return X
def _expm_multiply_simple(A, B, t=1.0, balance=False):
"""
Compute the action of the matrix exponential at a single time point.
Parameters
----------
A : transposable linear operator
The operator whose exponential is of interest.
B : ndarray
The matrix to be multiplied by the matrix exponential of A.
t : float
A time point.
balance : bool
Indicates whether or not to apply balancing.
Returns
-------
F : ndarray
:math:`e^{t A} B`
Notes
-----
This is algorithm (3.2) in Al-Mohy and Higham (2011).
"""
if balance:
raise NotImplementedError
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
raise ValueError('expected A to be like a square matrix')
if A.shape[1] != B.shape[0]:
raise ValueError('the matrices A and B have incompatible shapes')
ident = _ident_like(A)
n = A.shape[0]
if len(B.shape) == 1:
n0 = 1
elif len(B.shape) == 2:
n0 = B.shape[1]
else:
raise ValueError('expected B to be like a matrix or a vector')
u_d = 2**-53
tol = u_d
mu = _trace(A) / float(n)
A = A - mu * ident
A_1_norm = _exact_1_norm(A)
if t*A_1_norm == 0:
m_star, s = 0, 1
else:
ell = 2
norm_info = LazyOperatorNormInfo(t*A, A_1_norm=t*A_1_norm, ell=ell)
m_star, s = _fragment_3_1(norm_info, n0, tol, ell=ell)
return _expm_multiply_simple_core(A, B, t, mu, m_star, s, tol, balance)
def _expm_multiply_simple_core(A, B, t, mu, m_star, s, tol=None, balance=False):
"""
A helper function.
"""
if balance:
raise NotImplementedError
if tol is None:
u_d = 2 ** -53
tol = u_d
F = B
eta = np.exp(t*mu / float(s))
for i in range(s):
c1 = _exact_inf_norm(B)
for j in range(m_star):
coeff = t / float(s*(j+1))
B = coeff * A.dot(B)
c2 = _exact_inf_norm(B)
F = F + B
if c1 + c2 <= tol * _exact_inf_norm(F):
break
c1 = c2
F = eta * F
B = F
return F
# This table helps to compute bounds.
# They seem to have been difficult to calculate, involving symbolic
# manipulation of equations, followed by numerical root finding.
_theta = {
# The first 30 values are from table A.3 of Computing Matrix Functions.
1: 2.29e-16,
2: 2.58e-8,
3: 1.39e-5,
4: 3.40e-4,
5: 2.40e-3,
6: 9.07e-3,
7: 2.38e-2,
8: 5.00e-2,
9: 8.96e-2,
10: 1.44e-1,
# 11
11: 2.14e-1,
12: 3.00e-1,
13: 4.00e-1,
14: 5.14e-1,
15: 6.41e-1,
16: 7.81e-1,
17: 9.31e-1,
18: 1.09,
19: 1.26,
20: 1.44,
# 21
21: 1.62,
22: 1.82,
23: 2.01,
24: 2.22,
25: 2.43,
26: 2.64,
27: 2.86,
28: 3.08,
29: 3.31,
30: 3.54,
# The rest are from table 3.1 of
# Computing the Action of the Matrix Exponential.
35: 4.7,
40: 6.0,
45: 7.2,
50: 8.5,
55: 9.9,
}
def _onenormest_matrix_power(A, p,
t=2, itmax=5, compute_v=False, compute_w=False):
"""
Efficiently estimate the 1-norm of A^p.
Parameters
----------
A : ndarray
Matrix whose 1-norm of a power is to be computed.
p : int
Non-negative integer power.
t : int, optional
A positive parameter controlling the tradeoff between
accuracy versus time and memory usage.
Larger values take longer and use more memory
but give more accurate output.
itmax : int, optional
Use at most this many iterations.
compute_v : bool, optional
Request a norm-maximizing linear operator input vector if True.
compute_w : bool, optional
Request a norm-maximizing linear operator output vector if True.
Returns
-------
est : float
An underestimate of the 1-norm of the sparse matrix.
v : ndarray, optional
The vector such that ||Av||_1 == est*||v||_1.
It can be thought of as an input to the linear operator
that gives an output with particularly large norm.
w : ndarray, optional
The vector Av which has relatively large 1-norm.
It can be thought of as an output of the linear operator
that is relatively large in norm compared to the input.
"""
#XXX Eventually turn this into an API function in the _onenormest module,
#XXX and remove its underscore,
#XXX but wait until expm_multiply goes into scipy.
return scipy.sparse.linalg.onenormest(aslinearoperator(A) ** p)
class LazyOperatorNormInfo:
"""
Information about an operator is lazily computed.
The information includes the exact 1-norm of the operator,
in addition to estimates of 1-norms of powers of the operator.
This uses the notation of Computing the Action (2011).
This class is specialized enough to probably not be of general interest
outside of this module.
"""
def __init__(self, A, A_1_norm=None, ell=2, scale=1):
"""
Provide the operator and some norm-related information.
Parameters
----------
A : linear operator
The operator of interest.
A_1_norm : float, optional
The exact 1-norm of A.
ell : int, optional
A technical parameter controlling norm estimation quality.
scale : int, optional
If specified, return the norms of scale*A instead of A.
"""
self._A = A
self._A_1_norm = A_1_norm
self._ell = ell
self._d = {}
self._scale = scale
def set_scale(self,scale):
"""
Set the scale parameter.
"""
self._scale = scale
def onenorm(self):
"""
Compute the exact 1-norm.
"""
if self._A_1_norm is None:
self._A_1_norm = _exact_1_norm(self._A)
return self._scale*self._A_1_norm
def d(self, p):
"""
Lazily estimate d_p(A) ~= || A^p ||^(1/p) where ||.|| is the 1-norm.
"""
if p not in self._d:
est = _onenormest_matrix_power(self._A, p, self._ell)
self._d[p] = est ** (1.0 / p)
return self._scale*self._d[p]
def alpha(self, p):
"""
Lazily compute max(d(p), d(p+1)).
"""
return max(self.d(p), self.d(p+1))
def _compute_cost_div_m(m, p, norm_info):
"""
A helper function for computing bounds.
This is equation (3.10).
It measures cost in terms of the number of required matrix products.
Parameters
----------
m : int
A valid key of _theta.
p : int
A matrix power.
norm_info : LazyOperatorNormInfo
Information about 1-norms of related operators.
Returns
-------
cost_div_m : int
Required number of matrix products divided by m.
"""
return int(np.ceil(norm_info.alpha(p) / _theta[m]))
def _compute_p_max(m_max):
"""
Compute the largest positive integer p such that p*(p-1) <= m_max + 1.
Do this in a slightly dumb way, but safe and not too slow.
Parameters
----------
m_max : int
A count related to bounds.
"""
sqrt_m_max = np.sqrt(m_max)
p_low = int(np.floor(sqrt_m_max))
p_high = int(np.ceil(sqrt_m_max + 1))
return max(p for p in range(p_low, p_high+1) if p*(p-1) <= m_max + 1)
def _fragment_3_1(norm_info, n0, tol, m_max=55, ell=2):
"""
A helper function for the _expm_multiply_* functions.
Parameters
----------
norm_info : LazyOperatorNormInfo
Information about norms of certain linear operators of interest.
n0 : int
Number of columns in the _expm_multiply_* B matrix.
tol : float
Expected to be
:math:`2^{-24}` for single precision or
:math:`2^{-53}` for double precision.
m_max : int
A value related to a bound.
ell : int
The number of columns used in the 1-norm approximation.
This is usually taken to be small, maybe between 1 and 5.
Returns
-------
best_m : int
Related to bounds for error control.
best_s : int
Amount of scaling.
Notes
-----
This is code fragment (3.1) in Al-Mohy and Higham (2011).
The discussion of default values for m_max and ell
is given between the definitions of equation (3.11)
and the definition of equation (3.12).
"""
if ell < 1:
raise ValueError('expected ell to be a positive integer')
best_m = None
best_s = None
if _condition_3_13(norm_info.onenorm(), n0, m_max, ell):
for m, theta in _theta.items():
s = int(np.ceil(norm_info.onenorm() / theta))
if best_m is None or m * s < best_m * best_s:
best_m = m
best_s = s
else:
# Equation (3.11).
for p in range(2, _compute_p_max(m_max) + 1):
for m in range(p*(p-1)-1, m_max+1):
if m in _theta:
s = _compute_cost_div_m(m, p, norm_info)
if best_m is None or m * s < best_m * best_s:
best_m = m
best_s = s
best_s = max(best_s, 1)
return best_m, best_s
def _condition_3_13(A_1_norm, n0, m_max, ell):
"""
A helper function for the _expm_multiply_* functions.
Parameters
----------
A_1_norm : float
The precomputed 1-norm of A.
n0 : int
Number of columns in the _expm_multiply_* B matrix.
m_max : int
A value related to a bound.
ell : int
The number of columns used in the 1-norm approximation.
This is usually taken to be small, maybe between 1 and 5.
Returns
-------
value : bool
Indicates whether or not the condition has been met.
Notes
-----
This is condition (3.13) in Al-Mohy and Higham (2011).
"""
# This is the rhs of equation (3.12).
p_max = _compute_p_max(m_max)
a = 2 * ell * p_max * (p_max + 3)
# Evaluate the condition (3.13).
b = _theta[m_max] / float(n0 * m_max)
return A_1_norm <= a * b
def _expm_multiply_interval(A, B, start=None, stop=None,
num=None, endpoint=None, balance=False, status_only=False):
"""
Compute the action of the matrix exponential at multiple time points.
Parameters
----------
A : transposable linear operator
The operator whose exponential is of interest.
B : ndarray
The matrix to be multiplied by the matrix exponential of A.
start : scalar, optional
The starting time point of the sequence.
stop : scalar, optional
The end time point of the sequence, unless `endpoint` is set to False.
In that case, the sequence consists of all but the last of ``num + 1``
evenly spaced time points, so that `stop` is excluded.
Note that the step size changes when `endpoint` is False.
num : int, optional
Number of time points to use.
endpoint : bool, optional
If True, `stop` is the last time point. Otherwise, it is not included.
balance : bool
Indicates whether or not to apply balancing.
status_only : bool
A flag that is set to True for some debugging and testing operations.
Returns
-------
F : ndarray
:math:`e^{t_k A} B`
status : int
An integer status for testing and debugging.
Notes
-----
This is algorithm (5.2) in Al-Mohy and Higham (2011).
There seems to be a typo, where line 15 of the algorithm should be
moved to line 6.5 (between lines 6 and 7).
"""
if balance:
raise NotImplementedError
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
raise ValueError('expected A to be like a square matrix')
if A.shape[1] != B.shape[0]:
raise ValueError('the matrices A and B have incompatible shapes')
ident = _ident_like(A)
n = A.shape[0]
if len(B.shape) == 1:
n0 = 1
elif len(B.shape) == 2:
n0 = B.shape[1]
else:
raise ValueError('expected B to be like a matrix or a vector')
u_d = 2**-53
tol = u_d
mu = _trace(A) / float(n)
# Get the linspace samples, attempting to preserve the linspace defaults.
linspace_kwargs = {'retstep': True}
if num is not None:
linspace_kwargs['num'] = num
if endpoint is not None:
linspace_kwargs['endpoint'] = endpoint
samples, step = np.linspace(start, stop, **linspace_kwargs)
# Convert the linspace output to the notation used by the publication.
nsamples = len(samples)
if nsamples < 2:
raise ValueError('at least two time points are required')
q = nsamples - 1
h = step
t_0 = samples[0]
t_q = samples[q]
# Define the output ndarray.
# Use an ndim=3 shape, such that the last two indices
# are the ones that may be involved in level 3 BLAS operations.
X_shape = (nsamples,) + B.shape
X = np.empty(X_shape, dtype=np.result_type(A.dtype, B.dtype, float))
t = t_q - t_0
A = A - mu * ident
A_1_norm = _exact_1_norm(A)
ell = 2
norm_info = LazyOperatorNormInfo(t*A, A_1_norm=t*A_1_norm, ell=ell)
if t*A_1_norm == 0:
m_star, s = 0, 1
else:
m_star, s = _fragment_3_1(norm_info, n0, tol, ell=ell)
# Compute the expm action up to the initial time point.
X[0] = _expm_multiply_simple_core(A, B, t_0, mu, m_star, s)
# Compute the expm action at the rest of the time points.
if q <= s:
if status_only:
return 0
else:
return _expm_multiply_interval_core_0(A, X,
h, mu, q, norm_info, tol, ell,n0)
elif not (q % s):
if status_only:
return 1
else:
return _expm_multiply_interval_core_1(A, X,
h, mu, m_star, s, q, tol)
elif (q % s):
if status_only:
return 2
else:
return _expm_multiply_interval_core_2(A, X,
h, mu, m_star, s, q, tol)
else:
raise Exception('internal error')
def _expm_multiply_interval_core_0(A, X, h, mu, q, norm_info, tol, ell, n0):
"""
A helper function, for the case q <= s.
"""
# Compute the new values of m_star and s which should be applied
# over intervals of size t/q
if norm_info.onenorm() == 0:
m_star, s = 0, 1
else:
norm_info.set_scale(1./q)
m_star, s = _fragment_3_1(norm_info, n0, tol, ell=ell)
norm_info.set_scale(1)
for k in range(q):
X[k+1] = _expm_multiply_simple_core(A, X[k], h, mu, m_star, s)
return X, 0
def _expm_multiply_interval_core_1(A, X, h, mu, m_star, s, q, tol):
"""
A helper function, for the case q > s and q % s == 0.
"""
d = q // s
input_shape = X.shape[1:]
K_shape = (m_star + 1, ) + input_shape
K = np.empty(K_shape, dtype=X.dtype)
for i in range(s):
Z = X[i*d]
K[0] = Z
high_p = 0
for k in range(1, d+1):
F = K[0]
c1 = _exact_inf_norm(F)
for p in range(1, m_star+1):
if p > high_p:
K[p] = h * A.dot(K[p-1]) / float(p)
coeff = float(pow(k, p))
F = F + coeff * K[p]
inf_norm_K_p_1 = _exact_inf_norm(K[p])
c2 = coeff * inf_norm_K_p_1
if c1 + c2 <= tol * _exact_inf_norm(F):
break
c1 = c2
X[k + i*d] = np.exp(k*h*mu) * F
return X, 1
def _expm_multiply_interval_core_2(A, X, h, mu, m_star, s, q, tol):
"""
A helper function, for the case q > s and q % s > 0.
"""
d = q // s
j = q // d
r = q - d * j
input_shape = X.shape[1:]
K_shape = (m_star + 1, ) + input_shape
K = np.empty(K_shape, dtype=X.dtype)
for i in range(j + 1):
Z = X[i*d]
K[0] = Z
high_p = 0
if i < j:
effective_d = d
else:
effective_d = r
for k in range(1, effective_d+1):
F = K[0]
c1 = _exact_inf_norm(F)
for p in range(1, m_star+1):
if p == high_p + 1:
K[p] = h * A.dot(K[p-1]) / float(p)
high_p = p
coeff = float(pow(k, p))
F = F + coeff * K[p]
inf_norm_K_p_1 = _exact_inf_norm(K[p])
c2 = coeff * inf_norm_K_p_1
if c1 + c2 <= tol * _exact_inf_norm(F):
break
c1 = c2
X[k + i*d] = np.exp(k*h*mu) * F
return X, 2