123 lines
4 KiB
Python
123 lines
4 KiB
Python
"""Test functions for linalg._solve_toeplitz module
|
|
"""
|
|
from __future__ import division, print_function, absolute_import
|
|
|
|
import numpy as np
|
|
from scipy.linalg._solve_toeplitz import levinson
|
|
from scipy.linalg import solve, toeplitz, solve_toeplitz
|
|
from numpy.testing import assert_equal, assert_allclose
|
|
|
|
import pytest
|
|
from pytest import raises as assert_raises
|
|
|
|
|
|
def test_solve_equivalence():
|
|
# For toeplitz matrices, solve_toeplitz() should be equivalent to solve().
|
|
random = np.random.RandomState(1234)
|
|
for n in (1, 2, 3, 10):
|
|
c = random.randn(n)
|
|
if random.rand() < 0.5:
|
|
c = c + 1j * random.randn(n)
|
|
r = random.randn(n)
|
|
if random.rand() < 0.5:
|
|
r = r + 1j * random.randn(n)
|
|
y = random.randn(n)
|
|
if random.rand() < 0.5:
|
|
y = y + 1j * random.randn(n)
|
|
|
|
# Check equivalence when both the column and row are provided.
|
|
actual = solve_toeplitz((c,r), y)
|
|
desired = solve(toeplitz(c, r=r), y)
|
|
assert_allclose(actual, desired)
|
|
|
|
# Check equivalence when the column is provided but not the row.
|
|
actual = solve_toeplitz(c, b=y)
|
|
desired = solve(toeplitz(c), y)
|
|
assert_allclose(actual, desired)
|
|
|
|
|
|
def test_multiple_rhs():
|
|
random = np.random.RandomState(1234)
|
|
c = random.randn(4)
|
|
r = random.randn(4)
|
|
for offset in [0, 1j]:
|
|
for yshape in ((4,), (4, 3), (4, 3, 2)):
|
|
y = random.randn(*yshape) + offset
|
|
actual = solve_toeplitz((c,r), b=y)
|
|
desired = solve(toeplitz(c, r=r), y)
|
|
assert_equal(actual.shape, yshape)
|
|
assert_equal(desired.shape, yshape)
|
|
assert_allclose(actual, desired)
|
|
|
|
|
|
def test_native_list_arguments():
|
|
c = [1,2,4,7]
|
|
r = [1,3,9,12]
|
|
y = [5,1,4,2]
|
|
actual = solve_toeplitz((c,r), y)
|
|
desired = solve(toeplitz(c, r=r), y)
|
|
assert_allclose(actual, desired)
|
|
|
|
|
|
def test_zero_diag_error():
|
|
# The Levinson-Durbin implementation fails when the diagonal is zero.
|
|
random = np.random.RandomState(1234)
|
|
n = 4
|
|
c = random.randn(n)
|
|
r = random.randn(n)
|
|
y = random.randn(n)
|
|
c[0] = 0
|
|
assert_raises(np.linalg.LinAlgError,
|
|
solve_toeplitz, (c, r), b=y)
|
|
|
|
|
|
def test_wikipedia_counterexample():
|
|
# The Levinson-Durbin implementation also fails in other cases.
|
|
# This example is from the talk page of the wikipedia article.
|
|
random = np.random.RandomState(1234)
|
|
c = [2, 2, 1]
|
|
y = random.randn(3)
|
|
assert_raises(np.linalg.LinAlgError, solve_toeplitz, c, b=y)
|
|
|
|
|
|
def test_reflection_coeffs():
|
|
# check that that the partial solutions are given by the reflection
|
|
# coefficients
|
|
|
|
random = np.random.RandomState(1234)
|
|
y_d = random.randn(10)
|
|
y_z = random.randn(10) + 1j
|
|
reflection_coeffs_d = [1]
|
|
reflection_coeffs_z = [1]
|
|
for i in range(2, 10):
|
|
reflection_coeffs_d.append(solve_toeplitz(y_d[:(i-1)], b=y_d[1:i])[-1])
|
|
reflection_coeffs_z.append(solve_toeplitz(y_z[:(i-1)], b=y_z[1:i])[-1])
|
|
|
|
y_d_concat = np.concatenate((y_d[-2:0:-1], y_d[:-1]))
|
|
y_z_concat = np.concatenate((y_z[-2:0:-1].conj(), y_z[:-1]))
|
|
_, ref_d = levinson(y_d_concat, b=y_d[1:])
|
|
_, ref_z = levinson(y_z_concat, b=y_z[1:])
|
|
|
|
assert_allclose(reflection_coeffs_d, ref_d[:-1])
|
|
assert_allclose(reflection_coeffs_z, ref_z[:-1])
|
|
|
|
|
|
@pytest.mark.xfail(reason='Instability of Levinson iteration')
|
|
def test_unstable():
|
|
# this is a "Gaussian Toeplitz matrix", as mentioned in Example 2 of
|
|
# I. Gohbert, T. Kailath and V. Olshevsky "Fast Gaussian Elimination with
|
|
# Partial Pivoting for Matrices with Displacement Structure"
|
|
# Mathematics of Computation, 64, 212 (1995), pp 1557-1576
|
|
# which can be unstable for levinson recursion.
|
|
|
|
# other fast toeplitz solvers such as GKO or Burg should be better.
|
|
random = np.random.RandomState(1234)
|
|
n = 100
|
|
c = 0.9 ** (np.arange(n)**2)
|
|
y = random.randn(n)
|
|
|
|
solution1 = solve_toeplitz(c, b=y)
|
|
solution2 = solve(toeplitz(c), y)
|
|
|
|
assert_allclose(solution1, solution2)
|
|
|