2726 lines
103 KiB
Python
2726 lines
103 KiB
Python
# -*- coding: utf-8 -*-
|
|
# pylint: disable=W0612,E1101
|
|
|
|
from warnings import catch_warnings
|
|
from datetime import datetime
|
|
import operator
|
|
import pytest
|
|
|
|
import numpy as np
|
|
|
|
from pandas.core.dtypes.common import is_float_dtype
|
|
from pandas import (Series, DataFrame, Index, date_range, isna, notna,
|
|
pivot, MultiIndex)
|
|
from pandas.core.nanops import nanall, nanany
|
|
from pandas.core.panel import Panel
|
|
|
|
from pandas.io.formats.printing import pprint_thing
|
|
from pandas import compat
|
|
from pandas.compat import range, lrange, StringIO, OrderedDict, signature
|
|
|
|
from pandas.tseries.offsets import BDay, MonthEnd
|
|
from pandas.util.testing import (assert_panel_equal, assert_frame_equal,
|
|
assert_series_equal, assert_almost_equal,
|
|
ensure_clean, makeMixedDataFrame,
|
|
makeCustomDataframe as mkdf)
|
|
import pandas.core.panel as panelm
|
|
import pandas.util.testing as tm
|
|
import pandas.util._test_decorators as td
|
|
|
|
|
|
def make_test_panel():
|
|
with catch_warnings(record=True):
|
|
_panel = tm.makePanel()
|
|
tm.add_nans(_panel)
|
|
_panel = _panel.copy()
|
|
return _panel
|
|
|
|
|
|
class PanelTests(object):
|
|
panel = None
|
|
|
|
def test_pickle(self):
|
|
with catch_warnings(record=True):
|
|
unpickled = tm.round_trip_pickle(self.panel)
|
|
assert_frame_equal(unpickled['ItemA'], self.panel['ItemA'])
|
|
|
|
def test_rank(self):
|
|
with catch_warnings(record=True):
|
|
pytest.raises(NotImplementedError, lambda: self.panel.rank())
|
|
|
|
def test_cumsum(self):
|
|
with catch_warnings(record=True):
|
|
cumsum = self.panel.cumsum()
|
|
assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum())
|
|
|
|
def not_hashable(self):
|
|
with catch_warnings(record=True):
|
|
c_empty = Panel()
|
|
c = Panel(Panel([[[1]]]))
|
|
pytest.raises(TypeError, hash, c_empty)
|
|
pytest.raises(TypeError, hash, c)
|
|
|
|
|
|
class SafeForLongAndSparse(object):
|
|
|
|
def test_repr(self):
|
|
repr(self.panel)
|
|
|
|
def test_copy_names(self):
|
|
with catch_warnings(record=True):
|
|
for attr in ('major_axis', 'minor_axis'):
|
|
getattr(self.panel, attr).name = None
|
|
cp = self.panel.copy()
|
|
getattr(cp, attr).name = 'foo'
|
|
assert getattr(self.panel, attr).name is None
|
|
|
|
def test_iter(self):
|
|
tm.equalContents(list(self.panel), self.panel.items)
|
|
|
|
def test_count(self):
|
|
f = lambda s: notna(s).sum()
|
|
self._check_stat_op('count', f, obj=self.panel, has_skipna=False)
|
|
|
|
def test_sum(self):
|
|
self._check_stat_op('sum', np.sum, skipna_alternative=np.nansum)
|
|
|
|
def test_mean(self):
|
|
self._check_stat_op('mean', np.mean)
|
|
|
|
@td.skip_if_no("numpy", min_version="1.10.0")
|
|
def test_prod(self):
|
|
self._check_stat_op('prod', np.prod, skipna_alternative=np.nanprod)
|
|
|
|
def test_median(self):
|
|
def wrapper(x):
|
|
if isna(x).any():
|
|
return np.nan
|
|
return np.median(x)
|
|
|
|
self._check_stat_op('median', wrapper)
|
|
|
|
def test_min(self):
|
|
with catch_warnings(record=True):
|
|
self._check_stat_op('min', np.min)
|
|
|
|
def test_max(self):
|
|
with catch_warnings(record=True):
|
|
self._check_stat_op('max', np.max)
|
|
|
|
@td.skip_if_no_scipy
|
|
def test_skew(self):
|
|
from scipy.stats import skew
|
|
|
|
def this_skew(x):
|
|
if len(x) < 3:
|
|
return np.nan
|
|
return skew(x, bias=False)
|
|
|
|
self._check_stat_op('skew', this_skew)
|
|
|
|
def test_var(self):
|
|
def alt(x):
|
|
if len(x) < 2:
|
|
return np.nan
|
|
return np.var(x, ddof=1)
|
|
|
|
self._check_stat_op('var', alt)
|
|
|
|
def test_std(self):
|
|
def alt(x):
|
|
if len(x) < 2:
|
|
return np.nan
|
|
return np.std(x, ddof=1)
|
|
|
|
self._check_stat_op('std', alt)
|
|
|
|
def test_sem(self):
|
|
def alt(x):
|
|
if len(x) < 2:
|
|
return np.nan
|
|
return np.std(x, ddof=1) / np.sqrt(len(x))
|
|
|
|
self._check_stat_op('sem', alt)
|
|
|
|
def _check_stat_op(self, name, alternative, obj=None, has_skipna=True,
|
|
skipna_alternative=None):
|
|
if obj is None:
|
|
obj = self.panel
|
|
|
|
# # set some NAs
|
|
# obj.loc[5:10] = np.nan
|
|
# obj.loc[15:20, -2:] = np.nan
|
|
|
|
f = getattr(obj, name)
|
|
|
|
if has_skipna:
|
|
|
|
skipna_wrapper = tm._make_skipna_wrapper(alternative,
|
|
skipna_alternative)
|
|
|
|
def wrapper(x):
|
|
return alternative(np.asarray(x))
|
|
|
|
for i in range(obj.ndim):
|
|
result = f(axis=i, skipna=False)
|
|
assert_frame_equal(result, obj.apply(wrapper, axis=i))
|
|
else:
|
|
skipna_wrapper = alternative
|
|
wrapper = alternative
|
|
|
|
for i in range(obj.ndim):
|
|
result = f(axis=i)
|
|
if name in ['sum', 'prod']:
|
|
assert_frame_equal(result, obj.apply(skipna_wrapper, axis=i))
|
|
|
|
pytest.raises(Exception, f, axis=obj.ndim)
|
|
|
|
# Unimplemented numeric_only parameter.
|
|
if 'numeric_only' in signature(f).args:
|
|
tm.assert_raises_regex(NotImplementedError, name, f,
|
|
numeric_only=True)
|
|
|
|
|
|
class SafeForSparse(object):
|
|
|
|
@classmethod
|
|
def assert_panel_equal(cls, x, y):
|
|
assert_panel_equal(x, y)
|
|
|
|
def test_get_axis(self):
|
|
assert (self.panel._get_axis(0) is self.panel.items)
|
|
assert (self.panel._get_axis(1) is self.panel.major_axis)
|
|
assert (self.panel._get_axis(2) is self.panel.minor_axis)
|
|
|
|
def test_set_axis(self):
|
|
new_items = Index(np.arange(len(self.panel.items)))
|
|
new_major = Index(np.arange(len(self.panel.major_axis)))
|
|
new_minor = Index(np.arange(len(self.panel.minor_axis)))
|
|
|
|
# ensure propagate to potentially prior-cached items too
|
|
item = self.panel['ItemA']
|
|
self.panel.items = new_items
|
|
|
|
if hasattr(self.panel, '_item_cache'):
|
|
assert 'ItemA' not in self.panel._item_cache
|
|
assert self.panel.items is new_items
|
|
|
|
# TODO: unused?
|
|
item = self.panel[0] # noqa
|
|
|
|
self.panel.major_axis = new_major
|
|
assert self.panel[0].index is new_major
|
|
assert self.panel.major_axis is new_major
|
|
|
|
# TODO: unused?
|
|
item = self.panel[0] # noqa
|
|
|
|
self.panel.minor_axis = new_minor
|
|
assert self.panel[0].columns is new_minor
|
|
assert self.panel.minor_axis is new_minor
|
|
|
|
def test_get_axis_number(self):
|
|
assert self.panel._get_axis_number('items') == 0
|
|
assert self.panel._get_axis_number('major') == 1
|
|
assert self.panel._get_axis_number('minor') == 2
|
|
|
|
with tm.assert_raises_regex(ValueError, "No axis named foo"):
|
|
self.panel._get_axis_number('foo')
|
|
|
|
with tm.assert_raises_regex(ValueError, "No axis named foo"):
|
|
self.panel.__ge__(self.panel, axis='foo')
|
|
|
|
def test_get_axis_name(self):
|
|
assert self.panel._get_axis_name(0) == 'items'
|
|
assert self.panel._get_axis_name(1) == 'major_axis'
|
|
assert self.panel._get_axis_name(2) == 'minor_axis'
|
|
|
|
def test_get_plane_axes(self):
|
|
# what to do here?
|
|
|
|
index, columns = self.panel._get_plane_axes('items')
|
|
index, columns = self.panel._get_plane_axes('major_axis')
|
|
index, columns = self.panel._get_plane_axes('minor_axis')
|
|
index, columns = self.panel._get_plane_axes(0)
|
|
|
|
def test_truncate(self):
|
|
with catch_warnings(record=True):
|
|
dates = self.panel.major_axis
|
|
start, end = dates[1], dates[5]
|
|
|
|
trunced = self.panel.truncate(start, end, axis='major')
|
|
expected = self.panel['ItemA'].truncate(start, end)
|
|
|
|
assert_frame_equal(trunced['ItemA'], expected)
|
|
|
|
trunced = self.panel.truncate(before=start, axis='major')
|
|
expected = self.panel['ItemA'].truncate(before=start)
|
|
|
|
assert_frame_equal(trunced['ItemA'], expected)
|
|
|
|
trunced = self.panel.truncate(after=end, axis='major')
|
|
expected = self.panel['ItemA'].truncate(after=end)
|
|
|
|
assert_frame_equal(trunced['ItemA'], expected)
|
|
|
|
def test_arith(self):
|
|
with catch_warnings(record=True):
|
|
self._test_op(self.panel, operator.add)
|
|
self._test_op(self.panel, operator.sub)
|
|
self._test_op(self.panel, operator.mul)
|
|
self._test_op(self.panel, operator.truediv)
|
|
self._test_op(self.panel, operator.floordiv)
|
|
self._test_op(self.panel, operator.pow)
|
|
|
|
self._test_op(self.panel, lambda x, y: y + x)
|
|
self._test_op(self.panel, lambda x, y: y - x)
|
|
self._test_op(self.panel, lambda x, y: y * x)
|
|
self._test_op(self.panel, lambda x, y: y / x)
|
|
self._test_op(self.panel, lambda x, y: y ** x)
|
|
|
|
self._test_op(self.panel, lambda x, y: x + y) # panel + 1
|
|
self._test_op(self.panel, lambda x, y: x - y) # panel - 1
|
|
self._test_op(self.panel, lambda x, y: x * y) # panel * 1
|
|
self._test_op(self.panel, lambda x, y: x / y) # panel / 1
|
|
self._test_op(self.panel, lambda x, y: x ** y) # panel ** 1
|
|
|
|
pytest.raises(Exception, self.panel.__add__,
|
|
self.panel['ItemA'])
|
|
|
|
@staticmethod
|
|
def _test_op(panel, op):
|
|
result = op(panel, 1)
|
|
assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1))
|
|
|
|
def test_keys(self):
|
|
tm.equalContents(list(self.panel.keys()), self.panel.items)
|
|
|
|
def test_iteritems(self):
|
|
# Test panel.iteritems(), aka panel.iteritems()
|
|
# just test that it works
|
|
for k, v in self.panel.iteritems():
|
|
pass
|
|
|
|
assert len(list(self.panel.iteritems())) == len(self.panel.items)
|
|
|
|
def test_combineFrame(self):
|
|
with catch_warnings(record=True):
|
|
def check_op(op, name):
|
|
# items
|
|
df = self.panel['ItemA']
|
|
|
|
func = getattr(self.panel, name)
|
|
|
|
result = func(df, axis='items')
|
|
|
|
assert_frame_equal(
|
|
result['ItemB'], op(self.panel['ItemB'], df))
|
|
|
|
# major
|
|
xs = self.panel.major_xs(self.panel.major_axis[0])
|
|
result = func(xs, axis='major')
|
|
|
|
idx = self.panel.major_axis[1]
|
|
|
|
assert_frame_equal(result.major_xs(idx),
|
|
op(self.panel.major_xs(idx), xs))
|
|
|
|
# minor
|
|
xs = self.panel.minor_xs(self.panel.minor_axis[0])
|
|
result = func(xs, axis='minor')
|
|
|
|
idx = self.panel.minor_axis[1]
|
|
|
|
assert_frame_equal(result.minor_xs(idx),
|
|
op(self.panel.minor_xs(idx), xs))
|
|
|
|
ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'pow', 'mod']
|
|
if not compat.PY3:
|
|
ops.append('div')
|
|
|
|
for op in ops:
|
|
try:
|
|
check_op(getattr(operator, op), op)
|
|
except:
|
|
pprint_thing("Failing operation: %r" % op)
|
|
raise
|
|
if compat.PY3:
|
|
try:
|
|
check_op(operator.truediv, 'div')
|
|
except:
|
|
pprint_thing("Failing operation: %r" % 'div')
|
|
raise
|
|
|
|
def test_combinePanel(self):
|
|
with catch_warnings(record=True):
|
|
result = self.panel.add(self.panel)
|
|
assert_panel_equal(result, self.panel * 2)
|
|
|
|
def test_neg(self):
|
|
with catch_warnings(record=True):
|
|
assert_panel_equal(-self.panel, self.panel * -1)
|
|
|
|
# issue 7692
|
|
def test_raise_when_not_implemented(self):
|
|
with catch_warnings(record=True):
|
|
p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5),
|
|
items=['ItemA', 'ItemB', 'ItemC'],
|
|
major_axis=date_range('20130101', periods=4),
|
|
minor_axis=list('ABCDE'))
|
|
d = p.sum(axis=1).iloc[0]
|
|
ops = ['add', 'sub', 'mul', 'truediv',
|
|
'floordiv', 'div', 'mod', 'pow']
|
|
for op in ops:
|
|
with pytest.raises(NotImplementedError):
|
|
getattr(p, op)(d, axis=0)
|
|
|
|
def test_select(self):
|
|
with catch_warnings(record=True):
|
|
p = self.panel
|
|
|
|
# select items
|
|
result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items')
|
|
expected = p.reindex(items=['ItemA', 'ItemC'])
|
|
assert_panel_equal(result, expected)
|
|
|
|
# select major_axis
|
|
result = p.select(lambda x: x >= datetime(
|
|
2000, 1, 15), axis='major')
|
|
new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)]
|
|
expected = p.reindex(major=new_major)
|
|
assert_panel_equal(result, expected)
|
|
|
|
# select minor_axis
|
|
result = p.select(lambda x: x in ('D', 'A'), axis=2)
|
|
expected = p.reindex(minor=['A', 'D'])
|
|
assert_panel_equal(result, expected)
|
|
|
|
# corner case, empty thing
|
|
result = p.select(lambda x: x in ('foo', ), axis='items')
|
|
assert_panel_equal(result, p.reindex(items=[]))
|
|
|
|
def test_get_value(self):
|
|
for item in self.panel.items:
|
|
for mjr in self.panel.major_axis[::2]:
|
|
for mnr in self.panel.minor_axis:
|
|
with tm.assert_produces_warning(FutureWarning,
|
|
check_stacklevel=False):
|
|
result = self.panel.get_value(item, mjr, mnr)
|
|
expected = self.panel[item][mnr][mjr]
|
|
assert_almost_equal(result, expected)
|
|
|
|
def test_abs(self):
|
|
|
|
with catch_warnings(record=True):
|
|
result = self.panel.abs()
|
|
result2 = abs(self.panel)
|
|
expected = np.abs(self.panel)
|
|
assert_panel_equal(result, expected)
|
|
assert_panel_equal(result2, expected)
|
|
|
|
df = self.panel['ItemA']
|
|
result = df.abs()
|
|
result2 = abs(df)
|
|
expected = np.abs(df)
|
|
assert_frame_equal(result, expected)
|
|
assert_frame_equal(result2, expected)
|
|
|
|
s = df['A']
|
|
result = s.abs()
|
|
result2 = abs(s)
|
|
expected = np.abs(s)
|
|
assert_series_equal(result, expected)
|
|
assert_series_equal(result2, expected)
|
|
assert result.name == 'A'
|
|
assert result2.name == 'A'
|
|
|
|
|
|
class CheckIndexing(object):
|
|
|
|
def test_getitem(self):
|
|
pytest.raises(Exception, self.panel.__getitem__, 'ItemQ')
|
|
|
|
def test_delitem_and_pop(self):
|
|
with catch_warnings(record=True):
|
|
expected = self.panel['ItemA']
|
|
result = self.panel.pop('ItemA')
|
|
assert_frame_equal(expected, result)
|
|
assert 'ItemA' not in self.panel.items
|
|
|
|
del self.panel['ItemB']
|
|
assert 'ItemB' not in self.panel.items
|
|
pytest.raises(Exception, self.panel.__delitem__, 'ItemB')
|
|
|
|
values = np.empty((3, 3, 3))
|
|
values[0] = 0
|
|
values[1] = 1
|
|
values[2] = 2
|
|
|
|
panel = Panel(values, lrange(3), lrange(3), lrange(3))
|
|
|
|
# did we delete the right row?
|
|
|
|
panelc = panel.copy()
|
|
del panelc[0]
|
|
tm.assert_frame_equal(panelc[1], panel[1])
|
|
tm.assert_frame_equal(panelc[2], panel[2])
|
|
|
|
panelc = panel.copy()
|
|
del panelc[1]
|
|
tm.assert_frame_equal(panelc[0], panel[0])
|
|
tm.assert_frame_equal(panelc[2], panel[2])
|
|
|
|
panelc = panel.copy()
|
|
del panelc[2]
|
|
tm.assert_frame_equal(panelc[1], panel[1])
|
|
tm.assert_frame_equal(panelc[0], panel[0])
|
|
|
|
def test_setitem(self):
|
|
with catch_warnings(record=True):
|
|
|
|
# LongPanel with one item
|
|
lp = self.panel.filter(['ItemA', 'ItemB']).to_frame()
|
|
with pytest.raises(ValueError):
|
|
self.panel['ItemE'] = lp
|
|
|
|
# DataFrame
|
|
df = self.panel['ItemA'][2:].filter(items=['A', 'B'])
|
|
self.panel['ItemF'] = df
|
|
self.panel['ItemE'] = df
|
|
|
|
df2 = self.panel['ItemF']
|
|
|
|
assert_frame_equal(df, df2.reindex(
|
|
index=df.index, columns=df.columns))
|
|
|
|
# scalar
|
|
self.panel['ItemG'] = 1
|
|
self.panel['ItemE'] = True
|
|
assert self.panel['ItemG'].values.dtype == np.int64
|
|
assert self.panel['ItemE'].values.dtype == np.bool_
|
|
|
|
# object dtype
|
|
self.panel['ItemQ'] = 'foo'
|
|
assert self.panel['ItemQ'].values.dtype == np.object_
|
|
|
|
# boolean dtype
|
|
self.panel['ItemP'] = self.panel['ItemA'] > 0
|
|
assert self.panel['ItemP'].values.dtype == np.bool_
|
|
|
|
pytest.raises(TypeError, self.panel.__setitem__, 'foo',
|
|
self.panel.loc[['ItemP']])
|
|
|
|
# bad shape
|
|
p = Panel(np.random.randn(4, 3, 2))
|
|
with tm.assert_raises_regex(ValueError,
|
|
r"shape of value must be "
|
|
r"\(3, 2\), shape of given "
|
|
r"object was \(4, 2\)"):
|
|
p[0] = np.random.randn(4, 2)
|
|
|
|
def test_setitem_ndarray(self):
|
|
with catch_warnings(record=True):
|
|
timeidx = date_range(start=datetime(2009, 1, 1),
|
|
end=datetime(2009, 12, 31),
|
|
freq=MonthEnd())
|
|
lons_coarse = np.linspace(-177.5, 177.5, 72)
|
|
lats_coarse = np.linspace(-87.5, 87.5, 36)
|
|
P = Panel(items=timeidx, major_axis=lons_coarse,
|
|
minor_axis=lats_coarse)
|
|
data = np.random.randn(72 * 36).reshape((72, 36))
|
|
key = datetime(2009, 2, 28)
|
|
P[key] = data
|
|
|
|
assert_almost_equal(P[key].values, data)
|
|
|
|
def test_set_minor_major(self):
|
|
with catch_warnings(record=True):
|
|
# GH 11014
|
|
df1 = DataFrame(['a', 'a', 'a', np.nan, 'a', np.nan])
|
|
df2 = DataFrame([1.0, np.nan, 1.0, np.nan, 1.0, 1.0])
|
|
panel = Panel({'Item1': df1, 'Item2': df2})
|
|
|
|
newminor = notna(panel.iloc[:, :, 0])
|
|
panel.loc[:, :, 'NewMinor'] = newminor
|
|
assert_frame_equal(panel.loc[:, :, 'NewMinor'],
|
|
newminor.astype(object))
|
|
|
|
newmajor = notna(panel.iloc[:, 0, :])
|
|
panel.loc[:, 'NewMajor', :] = newmajor
|
|
assert_frame_equal(panel.loc[:, 'NewMajor', :],
|
|
newmajor.astype(object))
|
|
|
|
def test_major_xs(self):
|
|
with catch_warnings(record=True):
|
|
ref = self.panel['ItemA']
|
|
|
|
idx = self.panel.major_axis[5]
|
|
xs = self.panel.major_xs(idx)
|
|
|
|
result = xs['ItemA']
|
|
assert_series_equal(result, ref.xs(idx), check_names=False)
|
|
assert result.name == 'ItemA'
|
|
|
|
# not contained
|
|
idx = self.panel.major_axis[0] - BDay()
|
|
pytest.raises(Exception, self.panel.major_xs, idx)
|
|
|
|
def test_major_xs_mixed(self):
|
|
with catch_warnings(record=True):
|
|
self.panel['ItemD'] = 'foo'
|
|
xs = self.panel.major_xs(self.panel.major_axis[0])
|
|
assert xs['ItemA'].dtype == np.float64
|
|
assert xs['ItemD'].dtype == np.object_
|
|
|
|
def test_minor_xs(self):
|
|
with catch_warnings(record=True):
|
|
ref = self.panel['ItemA']
|
|
|
|
idx = self.panel.minor_axis[1]
|
|
xs = self.panel.minor_xs(idx)
|
|
|
|
assert_series_equal(xs['ItemA'], ref[idx], check_names=False)
|
|
|
|
# not contained
|
|
pytest.raises(Exception, self.panel.minor_xs, 'E')
|
|
|
|
def test_minor_xs_mixed(self):
|
|
with catch_warnings(record=True):
|
|
self.panel['ItemD'] = 'foo'
|
|
|
|
xs = self.panel.minor_xs('D')
|
|
assert xs['ItemA'].dtype == np.float64
|
|
assert xs['ItemD'].dtype == np.object_
|
|
|
|
def test_xs(self):
|
|
with catch_warnings(record=True):
|
|
itemA = self.panel.xs('ItemA', axis=0)
|
|
expected = self.panel['ItemA']
|
|
tm.assert_frame_equal(itemA, expected)
|
|
|
|
# Get a view by default.
|
|
itemA_view = self.panel.xs('ItemA', axis=0)
|
|
itemA_view.values[:] = np.nan
|
|
|
|
assert np.isnan(self.panel['ItemA'].values).all()
|
|
|
|
# Mixed-type yields a copy.
|
|
self.panel['strings'] = 'foo'
|
|
result = self.panel.xs('D', axis=2)
|
|
assert result._is_copy is not None
|
|
|
|
def test_getitem_fancy_labels(self):
|
|
with catch_warnings(record=True):
|
|
p = self.panel
|
|
|
|
items = p.items[[1, 0]]
|
|
dates = p.major_axis[::2]
|
|
cols = ['D', 'C', 'F']
|
|
|
|
# all 3 specified
|
|
assert_panel_equal(p.loc[items, dates, cols],
|
|
p.reindex(items=items, major=dates, minor=cols))
|
|
|
|
# 2 specified
|
|
assert_panel_equal(p.loc[:, dates, cols],
|
|
p.reindex(major=dates, minor=cols))
|
|
|
|
assert_panel_equal(p.loc[items, :, cols],
|
|
p.reindex(items=items, minor=cols))
|
|
|
|
assert_panel_equal(p.loc[items, dates, :],
|
|
p.reindex(items=items, major=dates))
|
|
|
|
# only 1
|
|
assert_panel_equal(p.loc[items, :, :], p.reindex(items=items))
|
|
|
|
assert_panel_equal(p.loc[:, dates, :], p.reindex(major=dates))
|
|
|
|
assert_panel_equal(p.loc[:, :, cols], p.reindex(minor=cols))
|
|
|
|
def test_getitem_fancy_slice(self):
|
|
pass
|
|
|
|
def test_getitem_fancy_ints(self):
|
|
p = self.panel
|
|
|
|
# #1603
|
|
result = p.iloc[:, -1, :]
|
|
expected = p.loc[:, p.major_axis[-1], :]
|
|
assert_frame_equal(result, expected)
|
|
|
|
def test_getitem_fancy_xs(self):
|
|
p = self.panel
|
|
item = 'ItemB'
|
|
|
|
date = p.major_axis[5]
|
|
col = 'C'
|
|
|
|
# get DataFrame
|
|
# item
|
|
assert_frame_equal(p.loc[item], p[item])
|
|
assert_frame_equal(p.loc[item, :], p[item])
|
|
assert_frame_equal(p.loc[item, :, :], p[item])
|
|
|
|
# major axis, axis=1
|
|
assert_frame_equal(p.loc[:, date], p.major_xs(date))
|
|
assert_frame_equal(p.loc[:, date, :], p.major_xs(date))
|
|
|
|
# minor axis, axis=2
|
|
assert_frame_equal(p.loc[:, :, 'C'], p.minor_xs('C'))
|
|
|
|
# get Series
|
|
assert_series_equal(p.loc[item, date], p[item].loc[date])
|
|
assert_series_equal(p.loc[item, date, :], p[item].loc[date])
|
|
assert_series_equal(p.loc[item, :, col], p[item][col])
|
|
assert_series_equal(p.loc[:, date, col], p.major_xs(date).loc[col])
|
|
|
|
def test_getitem_fancy_xs_check_view(self):
|
|
with catch_warnings(record=True):
|
|
item = 'ItemB'
|
|
date = self.panel.major_axis[5]
|
|
|
|
# make sure it's always a view
|
|
NS = slice(None, None)
|
|
|
|
# DataFrames
|
|
comp = assert_frame_equal
|
|
self._check_view(item, comp)
|
|
self._check_view((item, NS), comp)
|
|
self._check_view((item, NS, NS), comp)
|
|
self._check_view((NS, date), comp)
|
|
self._check_view((NS, date, NS), comp)
|
|
self._check_view((NS, NS, 'C'), comp)
|
|
|
|
# Series
|
|
comp = assert_series_equal
|
|
self._check_view((item, date), comp)
|
|
self._check_view((item, date, NS), comp)
|
|
self._check_view((item, NS, 'C'), comp)
|
|
self._check_view((NS, date, 'C'), comp)
|
|
|
|
def test_getitem_callable(self):
|
|
with catch_warnings(record=True):
|
|
p = self.panel
|
|
# GH 12533
|
|
|
|
assert_frame_equal(p[lambda x: 'ItemB'], p.loc['ItemB'])
|
|
assert_panel_equal(p[lambda x: ['ItemB', 'ItemC']],
|
|
p.loc[['ItemB', 'ItemC']])
|
|
|
|
def test_ix_setitem_slice_dataframe(self):
|
|
with catch_warnings(record=True):
|
|
a = Panel(items=[1, 2, 3], major_axis=[11, 22, 33],
|
|
minor_axis=[111, 222, 333])
|
|
b = DataFrame(np.random.randn(2, 3), index=[111, 333],
|
|
columns=[1, 2, 3])
|
|
|
|
a.loc[:, 22, [111, 333]] = b
|
|
|
|
assert_frame_equal(a.loc[:, 22, [111, 333]], b)
|
|
|
|
def test_ix_align(self):
|
|
with catch_warnings(record=True):
|
|
from pandas import Series
|
|
b = Series(np.random.randn(10), name=0)
|
|
b.sort_values()
|
|
df_orig = Panel(np.random.randn(3, 10, 2))
|
|
df = df_orig.copy()
|
|
|
|
df.loc[0, :, 0] = b
|
|
assert_series_equal(df.loc[0, :, 0].reindex(b.index), b)
|
|
|
|
df = df_orig.swapaxes(0, 1)
|
|
df.loc[:, 0, 0] = b
|
|
assert_series_equal(df.loc[:, 0, 0].reindex(b.index), b)
|
|
|
|
df = df_orig.swapaxes(1, 2)
|
|
df.loc[0, 0, :] = b
|
|
assert_series_equal(df.loc[0, 0, :].reindex(b.index), b)
|
|
|
|
def test_ix_frame_align(self):
|
|
with catch_warnings(record=True):
|
|
p_orig = tm.makePanel()
|
|
df = p_orig.iloc[0].copy()
|
|
assert_frame_equal(p_orig['ItemA'], df)
|
|
|
|
p = p_orig.copy()
|
|
p.iloc[0, :, :] = df
|
|
assert_panel_equal(p, p_orig)
|
|
|
|
p = p_orig.copy()
|
|
p.iloc[0] = df
|
|
assert_panel_equal(p, p_orig)
|
|
|
|
p = p_orig.copy()
|
|
p.iloc[0, :, :] = df
|
|
assert_panel_equal(p, p_orig)
|
|
|
|
p = p_orig.copy()
|
|
p.iloc[0] = df
|
|
assert_panel_equal(p, p_orig)
|
|
|
|
p = p_orig.copy()
|
|
p.loc['ItemA'] = df
|
|
assert_panel_equal(p, p_orig)
|
|
|
|
p = p_orig.copy()
|
|
p.loc['ItemA', :, :] = df
|
|
assert_panel_equal(p, p_orig)
|
|
|
|
p = p_orig.copy()
|
|
p['ItemA'] = df
|
|
assert_panel_equal(p, p_orig)
|
|
|
|
p = p_orig.copy()
|
|
p.iloc[0, [0, 1, 3, 5], -2:] = df
|
|
out = p.iloc[0, [0, 1, 3, 5], -2:]
|
|
assert_frame_equal(out, df.iloc[[0, 1, 3, 5], [2, 3]])
|
|
|
|
# GH3830, panel assignent by values/frame
|
|
for dtype in ['float64', 'int64']:
|
|
|
|
panel = Panel(np.arange(40).reshape((2, 4, 5)),
|
|
items=['a1', 'a2'], dtype=dtype)
|
|
df1 = panel.iloc[0]
|
|
df2 = panel.iloc[1]
|
|
|
|
tm.assert_frame_equal(panel.loc['a1'], df1)
|
|
tm.assert_frame_equal(panel.loc['a2'], df2)
|
|
|
|
# Assignment by Value Passes for 'a2'
|
|
panel.loc['a2'] = df1.values
|
|
tm.assert_frame_equal(panel.loc['a1'], df1)
|
|
tm.assert_frame_equal(panel.loc['a2'], df1)
|
|
|
|
# Assignment by DataFrame Ok w/o loc 'a2'
|
|
panel['a2'] = df2
|
|
tm.assert_frame_equal(panel.loc['a1'], df1)
|
|
tm.assert_frame_equal(panel.loc['a2'], df2)
|
|
|
|
# Assignment by DataFrame Fails for 'a2'
|
|
panel.loc['a2'] = df2
|
|
tm.assert_frame_equal(panel.loc['a1'], df1)
|
|
tm.assert_frame_equal(panel.loc['a2'], df2)
|
|
|
|
def _check_view(self, indexer, comp):
|
|
cp = self.panel.copy()
|
|
obj = cp.loc[indexer]
|
|
obj.values[:] = 0
|
|
assert (obj.values == 0).all()
|
|
comp(cp.loc[indexer].reindex_like(obj), obj)
|
|
|
|
def test_logical_with_nas(self):
|
|
with catch_warnings(record=True):
|
|
d = Panel({'ItemA': {'a': [np.nan, False]},
|
|
'ItemB': {'a': [True, True]}})
|
|
|
|
result = d['ItemA'] | d['ItemB']
|
|
expected = DataFrame({'a': [np.nan, True]})
|
|
assert_frame_equal(result, expected)
|
|
|
|
# this is autodowncasted here
|
|
result = d['ItemA'].fillna(False) | d['ItemB']
|
|
expected = DataFrame({'a': [True, True]})
|
|
assert_frame_equal(result, expected)
|
|
|
|
def test_neg(self):
|
|
with catch_warnings(record=True):
|
|
assert_panel_equal(-self.panel, -1 * self.panel)
|
|
|
|
def test_invert(self):
|
|
with catch_warnings(record=True):
|
|
assert_panel_equal(-(self.panel < 0), ~(self.panel < 0))
|
|
|
|
def test_comparisons(self):
|
|
with catch_warnings(record=True):
|
|
p1 = tm.makePanel()
|
|
p2 = tm.makePanel()
|
|
|
|
tp = p1.reindex(items=p1.items + ['foo'])
|
|
df = p1[p1.items[0]]
|
|
|
|
def test_comp(func):
|
|
|
|
# versus same index
|
|
result = func(p1, p2)
|
|
tm.assert_numpy_array_equal(result.values,
|
|
func(p1.values, p2.values))
|
|
|
|
# versus non-indexed same objs
|
|
pytest.raises(Exception, func, p1, tp)
|
|
|
|
# versus different objs
|
|
pytest.raises(Exception, func, p1, df)
|
|
|
|
# versus scalar
|
|
result3 = func(self.panel, 0)
|
|
tm.assert_numpy_array_equal(result3.values,
|
|
func(self.panel.values, 0))
|
|
|
|
with np.errstate(invalid='ignore'):
|
|
test_comp(operator.eq)
|
|
test_comp(operator.ne)
|
|
test_comp(operator.lt)
|
|
test_comp(operator.gt)
|
|
test_comp(operator.ge)
|
|
test_comp(operator.le)
|
|
|
|
def test_get_value(self):
|
|
with catch_warnings(record=True):
|
|
for item in self.panel.items:
|
|
for mjr in self.panel.major_axis[::2]:
|
|
for mnr in self.panel.minor_axis:
|
|
result = self.panel.get_value(item, mjr, mnr)
|
|
expected = self.panel[item][mnr][mjr]
|
|
assert_almost_equal(result, expected)
|
|
with tm.assert_raises_regex(TypeError,
|
|
"There must be an argument "
|
|
"for each axis"):
|
|
self.panel.get_value('a')
|
|
|
|
def test_set_value(self):
|
|
with catch_warnings(record=True):
|
|
for item in self.panel.items:
|
|
for mjr in self.panel.major_axis[::2]:
|
|
for mnr in self.panel.minor_axis:
|
|
self.panel.set_value(item, mjr, mnr, 1.)
|
|
tm.assert_almost_equal(self.panel[item][mnr][mjr], 1.)
|
|
|
|
# resize
|
|
res = self.panel.set_value('ItemE', 'foo', 'bar', 1.5)
|
|
assert isinstance(res, Panel)
|
|
assert res is not self.panel
|
|
assert res.get_value('ItemE', 'foo', 'bar') == 1.5
|
|
|
|
res3 = self.panel.set_value('ItemE', 'foobar', 'baz', 5)
|
|
assert is_float_dtype(res3['ItemE'].values)
|
|
|
|
msg = ("There must be an argument for each "
|
|
"axis plus the value provided")
|
|
with tm.assert_raises_regex(TypeError, msg):
|
|
self.panel.set_value('a')
|
|
|
|
|
|
class TestPanel(PanelTests, CheckIndexing, SafeForLongAndSparse,
|
|
SafeForSparse):
|
|
|
|
@classmethod
|
|
def assert_panel_equal(cls, x, y):
|
|
assert_panel_equal(x, y)
|
|
|
|
def setup_method(self, method):
|
|
self.panel = make_test_panel()
|
|
self.panel.major_axis.name = None
|
|
self.panel.minor_axis.name = None
|
|
self.panel.items.name = None
|
|
|
|
def test_constructor(self):
|
|
with catch_warnings(record=True):
|
|
# with BlockManager
|
|
wp = Panel(self.panel._data)
|
|
assert wp._data is self.panel._data
|
|
|
|
wp = Panel(self.panel._data, copy=True)
|
|
assert wp._data is not self.panel._data
|
|
tm.assert_panel_equal(wp, self.panel)
|
|
|
|
# strings handled prop
|
|
wp = Panel([[['foo', 'foo', 'foo', ], ['foo', 'foo', 'foo']]])
|
|
assert wp.values.dtype == np.object_
|
|
|
|
vals = self.panel.values
|
|
|
|
# no copy
|
|
wp = Panel(vals)
|
|
assert wp.values is vals
|
|
|
|
# copy
|
|
wp = Panel(vals, copy=True)
|
|
assert wp.values is not vals
|
|
|
|
# GH #8285, test when scalar data is used to construct a Panel
|
|
# if dtype is not passed, it should be inferred
|
|
value_and_dtype = [(1, 'int64'), (3.14, 'float64'),
|
|
('foo', np.object_)]
|
|
for (val, dtype) in value_and_dtype:
|
|
wp = Panel(val, items=range(2), major_axis=range(3),
|
|
minor_axis=range(4))
|
|
vals = np.empty((2, 3, 4), dtype=dtype)
|
|
vals.fill(val)
|
|
|
|
tm.assert_panel_equal(wp, Panel(vals, dtype=dtype))
|
|
|
|
# test the case when dtype is passed
|
|
wp = Panel(1, items=range(2), major_axis=range(3),
|
|
minor_axis=range(4),
|
|
dtype='float32')
|
|
vals = np.empty((2, 3, 4), dtype='float32')
|
|
vals.fill(1)
|
|
|
|
tm.assert_panel_equal(wp, Panel(vals, dtype='float32'))
|
|
|
|
def test_constructor_cast(self):
|
|
with catch_warnings(record=True):
|
|
zero_filled = self.panel.fillna(0)
|
|
|
|
casted = Panel(zero_filled._data, dtype=int)
|
|
casted2 = Panel(zero_filled.values, dtype=int)
|
|
|
|
exp_values = zero_filled.values.astype(int)
|
|
assert_almost_equal(casted.values, exp_values)
|
|
assert_almost_equal(casted2.values, exp_values)
|
|
|
|
casted = Panel(zero_filled._data, dtype=np.int32)
|
|
casted2 = Panel(zero_filled.values, dtype=np.int32)
|
|
|
|
exp_values = zero_filled.values.astype(np.int32)
|
|
assert_almost_equal(casted.values, exp_values)
|
|
assert_almost_equal(casted2.values, exp_values)
|
|
|
|
# can't cast
|
|
data = [[['foo', 'bar', 'baz']]]
|
|
pytest.raises(ValueError, Panel, data, dtype=float)
|
|
|
|
def test_constructor_empty_panel(self):
|
|
with catch_warnings(record=True):
|
|
empty = Panel()
|
|
assert len(empty.items) == 0
|
|
assert len(empty.major_axis) == 0
|
|
assert len(empty.minor_axis) == 0
|
|
|
|
def test_constructor_observe_dtype(self):
|
|
with catch_warnings(record=True):
|
|
# GH #411
|
|
panel = Panel(items=lrange(3), major_axis=lrange(3),
|
|
minor_axis=lrange(3), dtype='O')
|
|
assert panel.values.dtype == np.object_
|
|
|
|
def test_constructor_dtypes(self):
|
|
with catch_warnings(record=True):
|
|
# GH #797
|
|
|
|
def _check_dtype(panel, dtype):
|
|
for i in panel.items:
|
|
assert panel[i].values.dtype.name == dtype
|
|
|
|
# only nan holding types allowed here
|
|
for dtype in ['float64', 'float32', 'object']:
|
|
panel = Panel(items=lrange(2), major_axis=lrange(10),
|
|
minor_axis=lrange(5), dtype=dtype)
|
|
_check_dtype(panel, dtype)
|
|
|
|
for dtype in ['float64', 'float32', 'int64', 'int32', 'object']:
|
|
panel = Panel(np.array(np.random.randn(2, 10, 5), dtype=dtype),
|
|
items=lrange(2),
|
|
major_axis=lrange(10),
|
|
minor_axis=lrange(5), dtype=dtype)
|
|
_check_dtype(panel, dtype)
|
|
|
|
for dtype in ['float64', 'float32', 'int64', 'int32', 'object']:
|
|
panel = Panel(np.array(np.random.randn(2, 10, 5), dtype='O'),
|
|
items=lrange(2),
|
|
major_axis=lrange(10),
|
|
minor_axis=lrange(5), dtype=dtype)
|
|
_check_dtype(panel, dtype)
|
|
|
|
for dtype in ['float64', 'float32', 'int64', 'int32', 'object']:
|
|
panel = Panel(
|
|
np.random.randn(2, 10, 5),
|
|
items=lrange(2), major_axis=lrange(10),
|
|
minor_axis=lrange(5),
|
|
dtype=dtype)
|
|
_check_dtype(panel, dtype)
|
|
|
|
for dtype in ['float64', 'float32', 'int64', 'int32', 'object']:
|
|
df1 = DataFrame(np.random.randn(2, 5),
|
|
index=lrange(2), columns=lrange(5))
|
|
df2 = DataFrame(np.random.randn(2, 5),
|
|
index=lrange(2), columns=lrange(5))
|
|
panel = Panel.from_dict({'a': df1, 'b': df2}, dtype=dtype)
|
|
_check_dtype(panel, dtype)
|
|
|
|
def test_constructor_fails_with_not_3d_input(self):
|
|
with catch_warnings(record=True):
|
|
with tm.assert_raises_regex(ValueError, "The number of dimensions required is 3"): # noqa
|
|
Panel(np.random.randn(10, 2))
|
|
|
|
def test_consolidate(self):
|
|
with catch_warnings(record=True):
|
|
assert self.panel._data.is_consolidated()
|
|
|
|
self.panel['foo'] = 1.
|
|
assert not self.panel._data.is_consolidated()
|
|
|
|
panel = self.panel._consolidate()
|
|
assert panel._data.is_consolidated()
|
|
|
|
def test_ctor_dict(self):
|
|
with catch_warnings(record=True):
|
|
itema = self.panel['ItemA']
|
|
itemb = self.panel['ItemB']
|
|
|
|
d = {'A': itema, 'B': itemb[5:]}
|
|
d2 = {'A': itema._series, 'B': itemb[5:]._series}
|
|
d3 = {'A': None,
|
|
'B': DataFrame(itemb[5:]._series),
|
|
'C': DataFrame(itema._series)}
|
|
|
|
wp = Panel.from_dict(d)
|
|
wp2 = Panel.from_dict(d2) # nested Dict
|
|
|
|
# TODO: unused?
|
|
wp3 = Panel.from_dict(d3) # noqa
|
|
|
|
tm.assert_index_equal(wp.major_axis, self.panel.major_axis)
|
|
assert_panel_equal(wp, wp2)
|
|
|
|
# intersect
|
|
wp = Panel.from_dict(d, intersect=True)
|
|
tm.assert_index_equal(wp.major_axis, itemb.index[5:])
|
|
|
|
# use constructor
|
|
assert_panel_equal(Panel(d), Panel.from_dict(d))
|
|
assert_panel_equal(Panel(d2), Panel.from_dict(d2))
|
|
assert_panel_equal(Panel(d3), Panel.from_dict(d3))
|
|
|
|
# a pathological case
|
|
d4 = {'A': None, 'B': None}
|
|
|
|
# TODO: unused?
|
|
wp4 = Panel.from_dict(d4) # noqa
|
|
|
|
assert_panel_equal(Panel(d4), Panel(items=['A', 'B']))
|
|
|
|
# cast
|
|
dcasted = {k: v.reindex(wp.major_axis).fillna(0)
|
|
for k, v in compat.iteritems(d)}
|
|
result = Panel(dcasted, dtype=int)
|
|
expected = Panel({k: v.astype(int)
|
|
for k, v in compat.iteritems(dcasted)})
|
|
assert_panel_equal(result, expected)
|
|
|
|
result = Panel(dcasted, dtype=np.int32)
|
|
expected = Panel({k: v.astype(np.int32)
|
|
for k, v in compat.iteritems(dcasted)})
|
|
assert_panel_equal(result, expected)
|
|
|
|
def test_constructor_dict_mixed(self):
|
|
with catch_warnings(record=True):
|
|
data = {k: v.values for k, v in self.panel.iteritems()}
|
|
result = Panel(data)
|
|
exp_major = Index(np.arange(len(self.panel.major_axis)))
|
|
tm.assert_index_equal(result.major_axis, exp_major)
|
|
|
|
result = Panel(data, items=self.panel.items,
|
|
major_axis=self.panel.major_axis,
|
|
minor_axis=self.panel.minor_axis)
|
|
assert_panel_equal(result, self.panel)
|
|
|
|
data['ItemC'] = self.panel['ItemC']
|
|
result = Panel(data)
|
|
assert_panel_equal(result, self.panel)
|
|
|
|
# corner, blow up
|
|
data['ItemB'] = data['ItemB'][:-1]
|
|
pytest.raises(Exception, Panel, data)
|
|
|
|
data['ItemB'] = self.panel['ItemB'].values[:, :-1]
|
|
pytest.raises(Exception, Panel, data)
|
|
|
|
def test_ctor_orderedDict(self):
|
|
with catch_warnings(record=True):
|
|
keys = list(set(np.random.randint(0, 5000, 100)))[
|
|
:50] # unique random int keys
|
|
d = OrderedDict([(k, mkdf(10, 5)) for k in keys])
|
|
p = Panel(d)
|
|
assert list(p.items) == keys
|
|
|
|
p = Panel.from_dict(d)
|
|
assert list(p.items) == keys
|
|
|
|
def test_constructor_resize(self):
|
|
with catch_warnings(record=True):
|
|
data = self.panel._data
|
|
items = self.panel.items[:-1]
|
|
major = self.panel.major_axis[:-1]
|
|
minor = self.panel.minor_axis[:-1]
|
|
|
|
result = Panel(data, items=items,
|
|
major_axis=major, minor_axis=minor)
|
|
expected = self.panel.reindex(
|
|
items=items, major=major, minor=minor)
|
|
assert_panel_equal(result, expected)
|
|
|
|
result = Panel(data, items=items, major_axis=major)
|
|
expected = self.panel.reindex(items=items, major=major)
|
|
assert_panel_equal(result, expected)
|
|
|
|
result = Panel(data, items=items)
|
|
expected = self.panel.reindex(items=items)
|
|
assert_panel_equal(result, expected)
|
|
|
|
result = Panel(data, minor_axis=minor)
|
|
expected = self.panel.reindex(minor=minor)
|
|
assert_panel_equal(result, expected)
|
|
|
|
def test_from_dict_mixed_orient(self):
|
|
with catch_warnings(record=True):
|
|
df = tm.makeDataFrame()
|
|
df['foo'] = 'bar'
|
|
|
|
data = {'k1': df, 'k2': df}
|
|
|
|
panel = Panel.from_dict(data, orient='minor')
|
|
|
|
assert panel['foo'].values.dtype == np.object_
|
|
assert panel['A'].values.dtype == np.float64
|
|
|
|
def test_constructor_error_msgs(self):
|
|
with catch_warnings(record=True):
|
|
def testit():
|
|
Panel(np.random.randn(3, 4, 5),
|
|
lrange(4), lrange(5), lrange(5))
|
|
|
|
tm.assert_raises_regex(ValueError,
|
|
r"Shape of passed values is "
|
|
r"\(3, 4, 5\), indices imply "
|
|
r"\(4, 5, 5\)",
|
|
testit)
|
|
|
|
def testit():
|
|
Panel(np.random.randn(3, 4, 5),
|
|
lrange(5), lrange(4), lrange(5))
|
|
|
|
tm.assert_raises_regex(ValueError,
|
|
r"Shape of passed values is "
|
|
r"\(3, 4, 5\), indices imply "
|
|
r"\(5, 4, 5\)",
|
|
testit)
|
|
|
|
def testit():
|
|
Panel(np.random.randn(3, 4, 5),
|
|
lrange(5), lrange(5), lrange(4))
|
|
|
|
tm.assert_raises_regex(ValueError,
|
|
r"Shape of passed values is "
|
|
r"\(3, 4, 5\), indices imply "
|
|
r"\(5, 5, 4\)",
|
|
testit)
|
|
|
|
def test_conform(self):
|
|
with catch_warnings(record=True):
|
|
df = self.panel['ItemA'][:-5].filter(items=['A', 'B'])
|
|
conformed = self.panel.conform(df)
|
|
|
|
tm.assert_index_equal(conformed.index, self.panel.major_axis)
|
|
tm.assert_index_equal(conformed.columns, self.panel.minor_axis)
|
|
|
|
def test_convert_objects(self):
|
|
with catch_warnings(record=True):
|
|
|
|
# GH 4937
|
|
p = Panel(dict(A=dict(a=['1', '1.0'])))
|
|
expected = Panel(dict(A=dict(a=[1, 1.0])))
|
|
result = p._convert(numeric=True, coerce=True)
|
|
assert_panel_equal(result, expected)
|
|
|
|
def test_dtypes(self):
|
|
|
|
result = self.panel.dtypes
|
|
expected = Series(np.dtype('float64'), index=self.panel.items)
|
|
assert_series_equal(result, expected)
|
|
|
|
def test_astype(self):
|
|
with catch_warnings(record=True):
|
|
# GH7271
|
|
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
|
|
panel = Panel(data, ['a', 'b'], ['c', 'd'], ['e', 'f'])
|
|
|
|
str_data = np.array([[['1', '2'], ['3', '4']],
|
|
[['5', '6'], ['7', '8']]])
|
|
expected = Panel(str_data, ['a', 'b'], ['c', 'd'], ['e', 'f'])
|
|
assert_panel_equal(panel.astype(str), expected)
|
|
|
|
pytest.raises(NotImplementedError, panel.astype, {0: str})
|
|
|
|
def test_apply(self):
|
|
with catch_warnings(record=True):
|
|
# GH1148
|
|
|
|
# ufunc
|
|
applied = self.panel.apply(np.sqrt)
|
|
with np.errstate(invalid='ignore'):
|
|
expected = np.sqrt(self.panel.values)
|
|
assert_almost_equal(applied.values, expected)
|
|
|
|
# ufunc same shape
|
|
result = self.panel.apply(lambda x: x * 2, axis='items')
|
|
expected = self.panel * 2
|
|
assert_panel_equal(result, expected)
|
|
result = self.panel.apply(lambda x: x * 2, axis='major_axis')
|
|
expected = self.panel * 2
|
|
assert_panel_equal(result, expected)
|
|
result = self.panel.apply(lambda x: x * 2, axis='minor_axis')
|
|
expected = self.panel * 2
|
|
assert_panel_equal(result, expected)
|
|
|
|
# reduction to DataFrame
|
|
result = self.panel.apply(lambda x: x.dtype, axis='items')
|
|
expected = DataFrame(np.dtype('float64'),
|
|
index=self.panel.major_axis,
|
|
columns=self.panel.minor_axis)
|
|
assert_frame_equal(result, expected)
|
|
result = self.panel.apply(lambda x: x.dtype, axis='major_axis')
|
|
expected = DataFrame(np.dtype('float64'),
|
|
index=self.panel.minor_axis,
|
|
columns=self.panel.items)
|
|
assert_frame_equal(result, expected)
|
|
result = self.panel.apply(lambda x: x.dtype, axis='minor_axis')
|
|
expected = DataFrame(np.dtype('float64'),
|
|
index=self.panel.major_axis,
|
|
columns=self.panel.items)
|
|
assert_frame_equal(result, expected)
|
|
|
|
# reductions via other dims
|
|
expected = self.panel.sum(0)
|
|
result = self.panel.apply(lambda x: x.sum(), axis='items')
|
|
assert_frame_equal(result, expected)
|
|
expected = self.panel.sum(1)
|
|
result = self.panel.apply(lambda x: x.sum(), axis='major_axis')
|
|
assert_frame_equal(result, expected)
|
|
expected = self.panel.sum(2)
|
|
result = self.panel.apply(lambda x: x.sum(), axis='minor_axis')
|
|
assert_frame_equal(result, expected)
|
|
|
|
# pass kwargs
|
|
result = self.panel.apply(
|
|
lambda x, y: x.sum() + y, axis='items', y=5)
|
|
expected = self.panel.sum(0) + 5
|
|
assert_frame_equal(result, expected)
|
|
|
|
def test_apply_slabs(self):
|
|
with catch_warnings(record=True):
|
|
|
|
# same shape as original
|
|
result = self.panel.apply(lambda x: x * 2,
|
|
axis=['items', 'major_axis'])
|
|
expected = (self.panel * 2).transpose('minor_axis', 'major_axis',
|
|
'items')
|
|
assert_panel_equal(result, expected)
|
|
result = self.panel.apply(lambda x: x * 2,
|
|
axis=['major_axis', 'items'])
|
|
assert_panel_equal(result, expected)
|
|
|
|
result = self.panel.apply(lambda x: x * 2,
|
|
axis=['items', 'minor_axis'])
|
|
expected = (self.panel * 2).transpose('major_axis', 'minor_axis',
|
|
'items')
|
|
assert_panel_equal(result, expected)
|
|
result = self.panel.apply(lambda x: x * 2,
|
|
axis=['minor_axis', 'items'])
|
|
assert_panel_equal(result, expected)
|
|
|
|
result = self.panel.apply(lambda x: x * 2,
|
|
axis=['major_axis', 'minor_axis'])
|
|
expected = self.panel * 2
|
|
assert_panel_equal(result, expected)
|
|
result = self.panel.apply(lambda x: x * 2,
|
|
axis=['minor_axis', 'major_axis'])
|
|
assert_panel_equal(result, expected)
|
|
|
|
# reductions
|
|
result = self.panel.apply(lambda x: x.sum(0), axis=[
|
|
'items', 'major_axis'
|
|
])
|
|
expected = self.panel.sum(1).T
|
|
assert_frame_equal(result, expected)
|
|
|
|
# make sure that we don't trigger any warnings
|
|
with catch_warnings(record=True):
|
|
result = self.panel.apply(lambda x: x.sum(1), axis=[
|
|
'items', 'major_axis'
|
|
])
|
|
expected = self.panel.sum(0)
|
|
assert_frame_equal(result, expected)
|
|
|
|
# transforms
|
|
f = lambda x: ((x.T - x.mean(1)) / x.std(1)).T
|
|
|
|
# make sure that we don't trigger any warnings
|
|
result = self.panel.apply(f, axis=['items', 'major_axis'])
|
|
expected = Panel({ax: f(self.panel.loc[:, :, ax])
|
|
for ax in self.panel.minor_axis})
|
|
assert_panel_equal(result, expected)
|
|
|
|
result = self.panel.apply(f, axis=['major_axis', 'minor_axis'])
|
|
expected = Panel({ax: f(self.panel.loc[ax])
|
|
for ax in self.panel.items})
|
|
assert_panel_equal(result, expected)
|
|
|
|
result = self.panel.apply(f, axis=['minor_axis', 'items'])
|
|
expected = Panel({ax: f(self.panel.loc[:, ax])
|
|
for ax in self.panel.major_axis})
|
|
assert_panel_equal(result, expected)
|
|
|
|
# with multi-indexes
|
|
# GH7469
|
|
index = MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), (
|
|
'two', 'a'), ('two', 'b')])
|
|
dfa = DataFrame(np.array(np.arange(12, dtype='int64')).reshape(
|
|
4, 3), columns=list("ABC"), index=index)
|
|
dfb = DataFrame(np.array(np.arange(10, 22, dtype='int64')).reshape(
|
|
4, 3), columns=list("ABC"), index=index)
|
|
p = Panel({'f': dfa, 'g': dfb})
|
|
result = p.apply(lambda x: x.sum(), axis=0)
|
|
|
|
# on windows this will be in32
|
|
result = result.astype('int64')
|
|
expected = p.sum(0)
|
|
assert_frame_equal(result, expected)
|
|
|
|
def test_apply_no_or_zero_ndim(self):
|
|
with catch_warnings(record=True):
|
|
# GH10332
|
|
self.panel = Panel(np.random.rand(5, 5, 5))
|
|
|
|
result_int = self.panel.apply(lambda df: 0, axis=[1, 2])
|
|
result_float = self.panel.apply(lambda df: 0.0, axis=[1, 2])
|
|
result_int64 = self.panel.apply(
|
|
lambda df: np.int64(0), axis=[1, 2])
|
|
result_float64 = self.panel.apply(lambda df: np.float64(0.0),
|
|
axis=[1, 2])
|
|
|
|
expected_int = expected_int64 = Series([0] * 5)
|
|
expected_float = expected_float64 = Series([0.0] * 5)
|
|
|
|
assert_series_equal(result_int, expected_int)
|
|
assert_series_equal(result_int64, expected_int64)
|
|
assert_series_equal(result_float, expected_float)
|
|
assert_series_equal(result_float64, expected_float64)
|
|
|
|
def test_reindex(self):
|
|
with catch_warnings(record=True):
|
|
ref = self.panel['ItemB']
|
|
|
|
# items
|
|
result = self.panel.reindex(items=['ItemA', 'ItemB'])
|
|
assert_frame_equal(result['ItemB'], ref)
|
|
|
|
# major
|
|
new_major = list(self.panel.major_axis[:10])
|
|
result = self.panel.reindex(major=new_major)
|
|
assert_frame_equal(result['ItemB'], ref.reindex(index=new_major))
|
|
|
|
# raise exception put both major and major_axis
|
|
pytest.raises(Exception, self.panel.reindex,
|
|
major_axis=new_major,
|
|
major=new_major)
|
|
|
|
# minor
|
|
new_minor = list(self.panel.minor_axis[:2])
|
|
result = self.panel.reindex(minor=new_minor)
|
|
assert_frame_equal(result['ItemB'], ref.reindex(columns=new_minor))
|
|
|
|
# raise exception put both major and major_axis
|
|
pytest.raises(Exception, self.panel.reindex,
|
|
minor_axis=new_minor,
|
|
minor=new_minor)
|
|
|
|
# this ok
|
|
result = self.panel.reindex()
|
|
assert_panel_equal(result, self.panel)
|
|
assert result is not self.panel
|
|
|
|
# with filling
|
|
smaller_major = self.panel.major_axis[::5]
|
|
smaller = self.panel.reindex(major=smaller_major)
|
|
|
|
larger = smaller.reindex(major=self.panel.major_axis, method='pad')
|
|
|
|
assert_frame_equal(larger.major_xs(self.panel.major_axis[1]),
|
|
smaller.major_xs(smaller_major[0]))
|
|
|
|
# don't necessarily copy
|
|
result = self.panel.reindex(
|
|
major=self.panel.major_axis, copy=False)
|
|
assert_panel_equal(result, self.panel)
|
|
assert result is self.panel
|
|
|
|
def test_reindex_axis_style(self):
|
|
with catch_warnings(record=True):
|
|
panel = Panel(np.random.rand(5, 5, 5))
|
|
expected0 = Panel(panel.values).iloc[[0, 1]]
|
|
expected1 = Panel(panel.values).iloc[:, [0, 1]]
|
|
expected2 = Panel(panel.values).iloc[:, :, [0, 1]]
|
|
|
|
result = panel.reindex([0, 1], axis=0)
|
|
assert_panel_equal(result, expected0)
|
|
|
|
result = panel.reindex([0, 1], axis=1)
|
|
assert_panel_equal(result, expected1)
|
|
|
|
result = panel.reindex([0, 1], axis=2)
|
|
assert_panel_equal(result, expected2)
|
|
|
|
result = panel.reindex([0, 1], axis=2)
|
|
assert_panel_equal(result, expected2)
|
|
|
|
def test_reindex_multi(self):
|
|
with catch_warnings(record=True):
|
|
|
|
# with and without copy full reindexing
|
|
result = self.panel.reindex(
|
|
items=self.panel.items,
|
|
major=self.panel.major_axis,
|
|
minor=self.panel.minor_axis, copy=False)
|
|
|
|
assert result.items is self.panel.items
|
|
assert result.major_axis is self.panel.major_axis
|
|
assert result.minor_axis is self.panel.minor_axis
|
|
|
|
result = self.panel.reindex(
|
|
items=self.panel.items,
|
|
major=self.panel.major_axis,
|
|
minor=self.panel.minor_axis, copy=False)
|
|
assert_panel_equal(result, self.panel)
|
|
|
|
# multi-axis indexing consistency
|
|
# GH 5900
|
|
df = DataFrame(np.random.randn(4, 3))
|
|
p = Panel({'Item1': df})
|
|
expected = Panel({'Item1': df})
|
|
expected['Item2'] = np.nan
|
|
|
|
items = ['Item1', 'Item2']
|
|
major_axis = np.arange(4)
|
|
minor_axis = np.arange(3)
|
|
|
|
results = []
|
|
results.append(p.reindex(items=items, major_axis=major_axis,
|
|
copy=True))
|
|
results.append(p.reindex(items=items, major_axis=major_axis,
|
|
copy=False))
|
|
results.append(p.reindex(items=items, minor_axis=minor_axis,
|
|
copy=True))
|
|
results.append(p.reindex(items=items, minor_axis=minor_axis,
|
|
copy=False))
|
|
results.append(p.reindex(items=items, major_axis=major_axis,
|
|
minor_axis=minor_axis, copy=True))
|
|
results.append(p.reindex(items=items, major_axis=major_axis,
|
|
minor_axis=minor_axis, copy=False))
|
|
|
|
for i, r in enumerate(results):
|
|
assert_panel_equal(expected, r)
|
|
|
|
def test_reindex_like(self):
|
|
with catch_warnings(record=True):
|
|
# reindex_like
|
|
smaller = self.panel.reindex(items=self.panel.items[:-1],
|
|
major=self.panel.major_axis[:-1],
|
|
minor=self.panel.minor_axis[:-1])
|
|
smaller_like = self.panel.reindex_like(smaller)
|
|
assert_panel_equal(smaller, smaller_like)
|
|
|
|
def test_take(self):
|
|
with catch_warnings(record=True):
|
|
# axis == 0
|
|
result = self.panel.take([2, 0, 1], axis=0)
|
|
expected = self.panel.reindex(items=['ItemC', 'ItemA', 'ItemB'])
|
|
assert_panel_equal(result, expected)
|
|
|
|
# axis >= 1
|
|
result = self.panel.take([3, 0, 1, 2], axis=2)
|
|
expected = self.panel.reindex(minor=['D', 'A', 'B', 'C'])
|
|
assert_panel_equal(result, expected)
|
|
|
|
# neg indicies ok
|
|
expected = self.panel.reindex(minor=['D', 'D', 'B', 'C'])
|
|
result = self.panel.take([3, -1, 1, 2], axis=2)
|
|
assert_panel_equal(result, expected)
|
|
|
|
pytest.raises(Exception, self.panel.take, [4, 0, 1, 2], axis=2)
|
|
|
|
def test_sort_index(self):
|
|
with catch_warnings(record=True):
|
|
import random
|
|
|
|
ritems = list(self.panel.items)
|
|
rmajor = list(self.panel.major_axis)
|
|
rminor = list(self.panel.minor_axis)
|
|
random.shuffle(ritems)
|
|
random.shuffle(rmajor)
|
|
random.shuffle(rminor)
|
|
|
|
random_order = self.panel.reindex(items=ritems)
|
|
sorted_panel = random_order.sort_index(axis=0)
|
|
assert_panel_equal(sorted_panel, self.panel)
|
|
|
|
# descending
|
|
random_order = self.panel.reindex(items=ritems)
|
|
sorted_panel = random_order.sort_index(axis=0, ascending=False)
|
|
assert_panel_equal(
|
|
sorted_panel,
|
|
self.panel.reindex(items=self.panel.items[::-1]))
|
|
|
|
random_order = self.panel.reindex(major=rmajor)
|
|
sorted_panel = random_order.sort_index(axis=1)
|
|
assert_panel_equal(sorted_panel, self.panel)
|
|
|
|
random_order = self.panel.reindex(minor=rminor)
|
|
sorted_panel = random_order.sort_index(axis=2)
|
|
assert_panel_equal(sorted_panel, self.panel)
|
|
|
|
def test_fillna(self):
|
|
with catch_warnings(record=True):
|
|
filled = self.panel.fillna(0)
|
|
assert np.isfinite(filled.values).all()
|
|
|
|
filled = self.panel.fillna(method='backfill')
|
|
assert_frame_equal(filled['ItemA'],
|
|
self.panel['ItemA'].fillna(method='backfill'))
|
|
|
|
panel = self.panel.copy()
|
|
panel['str'] = 'foo'
|
|
|
|
filled = panel.fillna(method='backfill')
|
|
assert_frame_equal(filled['ItemA'],
|
|
panel['ItemA'].fillna(method='backfill'))
|
|
|
|
empty = self.panel.reindex(items=[])
|
|
filled = empty.fillna(0)
|
|
assert_panel_equal(filled, empty)
|
|
|
|
pytest.raises(ValueError, self.panel.fillna)
|
|
pytest.raises(ValueError, self.panel.fillna, 5, method='ffill')
|
|
|
|
pytest.raises(TypeError, self.panel.fillna, [1, 2])
|
|
pytest.raises(TypeError, self.panel.fillna, (1, 2))
|
|
|
|
# limit not implemented when only value is specified
|
|
p = Panel(np.random.randn(3, 4, 5))
|
|
p.iloc[0:2, 0:2, 0:2] = np.nan
|
|
pytest.raises(NotImplementedError,
|
|
lambda: p.fillna(999, limit=1))
|
|
|
|
# Test in place fillNA
|
|
# Expected result
|
|
expected = Panel([[[0, 1], [2, 1]], [[10, 11], [12, 11]]],
|
|
items=['a', 'b'], minor_axis=['x', 'y'],
|
|
dtype=np.float64)
|
|
# method='ffill'
|
|
p1 = Panel([[[0, 1], [2, np.nan]], [[10, 11], [12, np.nan]]],
|
|
items=['a', 'b'], minor_axis=['x', 'y'],
|
|
dtype=np.float64)
|
|
p1.fillna(method='ffill', inplace=True)
|
|
assert_panel_equal(p1, expected)
|
|
|
|
# method='bfill'
|
|
p2 = Panel([[[0, np.nan], [2, 1]], [[10, np.nan], [12, 11]]],
|
|
items=['a', 'b'], minor_axis=['x', 'y'],
|
|
dtype=np.float64)
|
|
p2.fillna(method='bfill', inplace=True)
|
|
assert_panel_equal(p2, expected)
|
|
|
|
def test_ffill_bfill(self):
|
|
with catch_warnings(record=True):
|
|
assert_panel_equal(self.panel.ffill(),
|
|
self.panel.fillna(method='ffill'))
|
|
assert_panel_equal(self.panel.bfill(),
|
|
self.panel.fillna(method='bfill'))
|
|
|
|
def test_truncate_fillna_bug(self):
|
|
with catch_warnings(record=True):
|
|
# #1823
|
|
result = self.panel.truncate(before=None, after=None, axis='items')
|
|
|
|
# it works!
|
|
result.fillna(value=0.0)
|
|
|
|
def test_swapaxes(self):
|
|
with catch_warnings(record=True):
|
|
result = self.panel.swapaxes('items', 'minor')
|
|
assert result.items is self.panel.minor_axis
|
|
|
|
result = self.panel.swapaxes('items', 'major')
|
|
assert result.items is self.panel.major_axis
|
|
|
|
result = self.panel.swapaxes('major', 'minor')
|
|
assert result.major_axis is self.panel.minor_axis
|
|
|
|
panel = self.panel.copy()
|
|
result = panel.swapaxes('major', 'minor')
|
|
panel.values[0, 0, 1] = np.nan
|
|
expected = panel.swapaxes('major', 'minor')
|
|
assert_panel_equal(result, expected)
|
|
|
|
# this should also work
|
|
result = self.panel.swapaxes(0, 1)
|
|
assert result.items is self.panel.major_axis
|
|
|
|
# this works, but return a copy
|
|
result = self.panel.swapaxes('items', 'items')
|
|
assert_panel_equal(self.panel, result)
|
|
assert id(self.panel) != id(result)
|
|
|
|
def test_transpose(self):
|
|
with catch_warnings(record=True):
|
|
result = self.panel.transpose('minor', 'major', 'items')
|
|
expected = self.panel.swapaxes('items', 'minor')
|
|
assert_panel_equal(result, expected)
|
|
|
|
# test kwargs
|
|
result = self.panel.transpose(items='minor', major='major',
|
|
minor='items')
|
|
expected = self.panel.swapaxes('items', 'minor')
|
|
assert_panel_equal(result, expected)
|
|
|
|
# text mixture of args
|
|
result = self.panel.transpose(
|
|
'minor', major='major', minor='items')
|
|
expected = self.panel.swapaxes('items', 'minor')
|
|
assert_panel_equal(result, expected)
|
|
|
|
result = self.panel.transpose('minor',
|
|
'major',
|
|
minor='items')
|
|
expected = self.panel.swapaxes('items', 'minor')
|
|
assert_panel_equal(result, expected)
|
|
|
|
# duplicate axes
|
|
with tm.assert_raises_regex(TypeError,
|
|
'not enough/duplicate arguments'):
|
|
self.panel.transpose('minor', maj='major', minor='items')
|
|
|
|
with tm.assert_raises_regex(ValueError,
|
|
'repeated axis in transpose'):
|
|
self.panel.transpose('minor', 'major', major='minor',
|
|
minor='items')
|
|
|
|
result = self.panel.transpose(2, 1, 0)
|
|
assert_panel_equal(result, expected)
|
|
|
|
result = self.panel.transpose('minor', 'items', 'major')
|
|
expected = self.panel.swapaxes('items', 'minor')
|
|
expected = expected.swapaxes('major', 'minor')
|
|
assert_panel_equal(result, expected)
|
|
|
|
result = self.panel.transpose(2, 0, 1)
|
|
assert_panel_equal(result, expected)
|
|
|
|
pytest.raises(ValueError, self.panel.transpose, 0, 0, 1)
|
|
|
|
def test_transpose_copy(self):
|
|
with catch_warnings(record=True):
|
|
panel = self.panel.copy()
|
|
result = panel.transpose(2, 0, 1, copy=True)
|
|
expected = panel.swapaxes('items', 'minor')
|
|
expected = expected.swapaxes('major', 'minor')
|
|
assert_panel_equal(result, expected)
|
|
|
|
panel.values[0, 1, 1] = np.nan
|
|
assert notna(result.values[1, 0, 1])
|
|
|
|
def test_to_frame(self):
|
|
with catch_warnings(record=True):
|
|
# filtered
|
|
filtered = self.panel.to_frame()
|
|
expected = self.panel.to_frame().dropna(how='any')
|
|
assert_frame_equal(filtered, expected)
|
|
|
|
# unfiltered
|
|
unfiltered = self.panel.to_frame(filter_observations=False)
|
|
assert_panel_equal(unfiltered.to_panel(), self.panel)
|
|
|
|
# names
|
|
assert unfiltered.index.names == ('major', 'minor')
|
|
|
|
# unsorted, round trip
|
|
df = self.panel.to_frame(filter_observations=False)
|
|
unsorted = df.take(np.random.permutation(len(df)))
|
|
pan = unsorted.to_panel()
|
|
assert_panel_equal(pan, self.panel)
|
|
|
|
# preserve original index names
|
|
df = DataFrame(np.random.randn(6, 2),
|
|
index=[['a', 'a', 'b', 'b', 'c', 'c'],
|
|
[0, 1, 0, 1, 0, 1]],
|
|
columns=['one', 'two'])
|
|
df.index.names = ['foo', 'bar']
|
|
df.columns.name = 'baz'
|
|
|
|
rdf = df.to_panel().to_frame()
|
|
assert rdf.index.names == df.index.names
|
|
assert rdf.columns.names == df.columns.names
|
|
|
|
def test_to_frame_mixed(self):
|
|
with catch_warnings(record=True):
|
|
panel = self.panel.fillna(0)
|
|
panel['str'] = 'foo'
|
|
panel['bool'] = panel['ItemA'] > 0
|
|
|
|
lp = panel.to_frame()
|
|
wp = lp.to_panel()
|
|
assert wp['bool'].values.dtype == np.bool_
|
|
# Previously, this was mutating the underlying
|
|
# index and changing its name
|
|
assert_frame_equal(wp['bool'], panel['bool'], check_names=False)
|
|
|
|
# GH 8704
|
|
# with categorical
|
|
df = panel.to_frame()
|
|
df['category'] = df['str'].astype('category')
|
|
|
|
# to_panel
|
|
# TODO: this converts back to object
|
|
p = df.to_panel()
|
|
expected = panel.copy()
|
|
expected['category'] = 'foo'
|
|
assert_panel_equal(p, expected)
|
|
|
|
def test_to_frame_multi_major(self):
|
|
with catch_warnings(record=True):
|
|
idx = MultiIndex.from_tuples(
|
|
[(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')])
|
|
df = DataFrame([[1, 'a', 1], [2, 'b', 1],
|
|
[3, 'c', 1], [4, 'd', 1]],
|
|
columns=['A', 'B', 'C'], index=idx)
|
|
wp = Panel({'i1': df, 'i2': df})
|
|
expected_idx = MultiIndex.from_tuples(
|
|
[
|
|
(1, 'one', 'A'), (1, 'one', 'B'),
|
|
(1, 'one', 'C'), (1, 'two', 'A'),
|
|
(1, 'two', 'B'), (1, 'two', 'C'),
|
|
(2, 'one', 'A'), (2, 'one', 'B'),
|
|
(2, 'one', 'C'), (2, 'two', 'A'),
|
|
(2, 'two', 'B'), (2, 'two', 'C')
|
|
],
|
|
names=[None, None, 'minor'])
|
|
expected = DataFrame({'i1': [1, 'a', 1, 2, 'b', 1, 3,
|
|
'c', 1, 4, 'd', 1],
|
|
'i2': [1, 'a', 1, 2, 'b',
|
|
1, 3, 'c', 1, 4, 'd', 1]},
|
|
index=expected_idx)
|
|
result = wp.to_frame()
|
|
assert_frame_equal(result, expected)
|
|
|
|
wp.iloc[0, 0].iloc[0] = np.nan # BUG on setting. GH #5773
|
|
result = wp.to_frame()
|
|
assert_frame_equal(result, expected[1:])
|
|
|
|
idx = MultiIndex.from_tuples(
|
|
[(1, 'two'), (1, 'one'), (2, 'one'), (np.nan, 'two')])
|
|
df = DataFrame([[1, 'a', 1], [2, 'b', 1],
|
|
[3, 'c', 1], [4, 'd', 1]],
|
|
columns=['A', 'B', 'C'], index=idx)
|
|
wp = Panel({'i1': df, 'i2': df})
|
|
ex_idx = MultiIndex.from_tuples([(1, 'two', 'A'), (1, 'two', 'B'),
|
|
(1, 'two', 'C'),
|
|
(1, 'one', 'A'),
|
|
(1, 'one', 'B'),
|
|
(1, 'one', 'C'),
|
|
(2, 'one', 'A'),
|
|
(2, 'one', 'B'),
|
|
(2, 'one', 'C'),
|
|
(np.nan, 'two', 'A'),
|
|
(np.nan, 'two', 'B'),
|
|
(np.nan, 'two', 'C')],
|
|
names=[None, None, 'minor'])
|
|
expected.index = ex_idx
|
|
result = wp.to_frame()
|
|
assert_frame_equal(result, expected)
|
|
|
|
def test_to_frame_multi_major_minor(self):
|
|
with catch_warnings(record=True):
|
|
cols = MultiIndex(levels=[['C_A', 'C_B'], ['C_1', 'C_2']],
|
|
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])
|
|
idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), (
|
|
2, 'two'), (3, 'three'), (4, 'four')])
|
|
df = DataFrame([[1, 2, 11, 12], [3, 4, 13, 14],
|
|
['a', 'b', 'w', 'x'],
|
|
['c', 'd', 'y', 'z'], [-1, -2, -3, -4],
|
|
[-5, -6, -7, -8]], columns=cols, index=idx)
|
|
wp = Panel({'i1': df, 'i2': df})
|
|
|
|
exp_idx = MultiIndex.from_tuples(
|
|
[(1, 'one', 'C_A', 'C_1'), (1, 'one', 'C_A', 'C_2'),
|
|
(1, 'one', 'C_B', 'C_1'), (1, 'one', 'C_B', 'C_2'),
|
|
(1, 'two', 'C_A', 'C_1'), (1, 'two', 'C_A', 'C_2'),
|
|
(1, 'two', 'C_B', 'C_1'), (1, 'two', 'C_B', 'C_2'),
|
|
(2, 'one', 'C_A', 'C_1'), (2, 'one', 'C_A', 'C_2'),
|
|
(2, 'one', 'C_B', 'C_1'), (2, 'one', 'C_B', 'C_2'),
|
|
(2, 'two', 'C_A', 'C_1'), (2, 'two', 'C_A', 'C_2'),
|
|
(2, 'two', 'C_B', 'C_1'), (2, 'two', 'C_B', 'C_2'),
|
|
(3, 'three', 'C_A', 'C_1'), (3, 'three', 'C_A', 'C_2'),
|
|
(3, 'three', 'C_B', 'C_1'), (3, 'three', 'C_B', 'C_2'),
|
|
(4, 'four', 'C_A', 'C_1'), (4, 'four', 'C_A', 'C_2'),
|
|
(4, 'four', 'C_B', 'C_1'), (4, 'four', 'C_B', 'C_2')],
|
|
names=[None, None, None, None])
|
|
exp_val = [[1, 1], [2, 2], [11, 11], [12, 12],
|
|
[3, 3], [4, 4],
|
|
[13, 13], [14, 14], ['a', 'a'],
|
|
['b', 'b'], ['w', 'w'],
|
|
['x', 'x'], ['c', 'c'], ['d', 'd'], [
|
|
'y', 'y'], ['z', 'z'],
|
|
[-1, -1], [-2, -2], [-3, -3], [-4, -4],
|
|
[-5, -5], [-6, -6],
|
|
[-7, -7], [-8, -8]]
|
|
result = wp.to_frame()
|
|
expected = DataFrame(exp_val, columns=['i1', 'i2'], index=exp_idx)
|
|
assert_frame_equal(result, expected)
|
|
|
|
def test_to_frame_multi_drop_level(self):
|
|
with catch_warnings(record=True):
|
|
idx = MultiIndex.from_tuples([(1, 'one'), (2, 'one'), (2, 'two')])
|
|
df = DataFrame({'A': [np.nan, 1, 2]}, index=idx)
|
|
wp = Panel({'i1': df, 'i2': df})
|
|
result = wp.to_frame()
|
|
exp_idx = MultiIndex.from_tuples(
|
|
[(2, 'one', 'A'), (2, 'two', 'A')],
|
|
names=[None, None, 'minor'])
|
|
expected = DataFrame({'i1': [1., 2], 'i2': [1., 2]}, index=exp_idx)
|
|
assert_frame_equal(result, expected)
|
|
|
|
def test_to_panel_na_handling(self):
|
|
with catch_warnings(record=True):
|
|
df = DataFrame(np.random.randint(0, 10, size=20).reshape((10, 2)),
|
|
index=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
|
|
[0, 1, 2, 3, 4, 5, 2, 3, 4, 5]])
|
|
|
|
panel = df.to_panel()
|
|
assert isna(panel[0].loc[1, [0, 1]]).all()
|
|
|
|
def test_to_panel_duplicates(self):
|
|
# #2441
|
|
with catch_warnings(record=True):
|
|
df = DataFrame({'a': [0, 0, 1], 'b': [1, 1, 1], 'c': [1, 2, 3]})
|
|
idf = df.set_index(['a', 'b'])
|
|
tm.assert_raises_regex(
|
|
ValueError, 'non-uniquely indexed', idf.to_panel)
|
|
|
|
def test_panel_dups(self):
|
|
with catch_warnings(record=True):
|
|
|
|
# GH 4960
|
|
# duplicates in an index
|
|
|
|
# items
|
|
data = np.random.randn(5, 100, 5)
|
|
no_dup_panel = Panel(data, items=list("ABCDE"))
|
|
panel = Panel(data, items=list("AACDE"))
|
|
|
|
expected = no_dup_panel['A']
|
|
result = panel.iloc[0]
|
|
assert_frame_equal(result, expected)
|
|
|
|
expected = no_dup_panel['E']
|
|
result = panel.loc['E']
|
|
assert_frame_equal(result, expected)
|
|
|
|
expected = no_dup_panel.loc[['A', 'B']]
|
|
expected.items = ['A', 'A']
|
|
result = panel.loc['A']
|
|
assert_panel_equal(result, expected)
|
|
|
|
# major
|
|
data = np.random.randn(5, 5, 5)
|
|
no_dup_panel = Panel(data, major_axis=list("ABCDE"))
|
|
panel = Panel(data, major_axis=list("AACDE"))
|
|
|
|
expected = no_dup_panel.loc[:, 'A']
|
|
result = panel.iloc[:, 0]
|
|
assert_frame_equal(result, expected)
|
|
|
|
expected = no_dup_panel.loc[:, 'E']
|
|
result = panel.loc[:, 'E']
|
|
assert_frame_equal(result, expected)
|
|
|
|
expected = no_dup_panel.loc[:, ['A', 'B']]
|
|
expected.major_axis = ['A', 'A']
|
|
result = panel.loc[:, 'A']
|
|
assert_panel_equal(result, expected)
|
|
|
|
# minor
|
|
data = np.random.randn(5, 100, 5)
|
|
no_dup_panel = Panel(data, minor_axis=list("ABCDE"))
|
|
panel = Panel(data, minor_axis=list("AACDE"))
|
|
|
|
expected = no_dup_panel.loc[:, :, 'A']
|
|
result = panel.iloc[:, :, 0]
|
|
assert_frame_equal(result, expected)
|
|
|
|
expected = no_dup_panel.loc[:, :, 'E']
|
|
result = panel.loc[:, :, 'E']
|
|
assert_frame_equal(result, expected)
|
|
|
|
expected = no_dup_panel.loc[:, :, ['A', 'B']]
|
|
expected.minor_axis = ['A', 'A']
|
|
result = panel.loc[:, :, 'A']
|
|
assert_panel_equal(result, expected)
|
|
|
|
def test_filter(self):
|
|
pass
|
|
|
|
def test_compound(self):
|
|
with catch_warnings(record=True):
|
|
compounded = self.panel.compound()
|
|
|
|
assert_series_equal(compounded['ItemA'],
|
|
(1 + self.panel['ItemA']).product(0) - 1,
|
|
check_names=False)
|
|
|
|
def test_shift(self):
|
|
with catch_warnings(record=True):
|
|
# major
|
|
idx = self.panel.major_axis[0]
|
|
idx_lag = self.panel.major_axis[1]
|
|
shifted = self.panel.shift(1)
|
|
assert_frame_equal(self.panel.major_xs(idx),
|
|
shifted.major_xs(idx_lag))
|
|
|
|
# minor
|
|
idx = self.panel.minor_axis[0]
|
|
idx_lag = self.panel.minor_axis[1]
|
|
shifted = self.panel.shift(1, axis='minor')
|
|
assert_frame_equal(self.panel.minor_xs(idx),
|
|
shifted.minor_xs(idx_lag))
|
|
|
|
# items
|
|
idx = self.panel.items[0]
|
|
idx_lag = self.panel.items[1]
|
|
shifted = self.panel.shift(1, axis='items')
|
|
assert_frame_equal(self.panel[idx], shifted[idx_lag])
|
|
|
|
# negative numbers, #2164
|
|
result = self.panel.shift(-1)
|
|
expected = Panel({i: f.shift(-1)[:-1]
|
|
for i, f in self.panel.iteritems()})
|
|
assert_panel_equal(result, expected)
|
|
|
|
# mixed dtypes #6959
|
|
data = [('item ' + ch, makeMixedDataFrame())
|
|
for ch in list('abcde')]
|
|
data = dict(data)
|
|
mixed_panel = Panel.from_dict(data, orient='minor')
|
|
shifted = mixed_panel.shift(1)
|
|
assert_series_equal(mixed_panel.dtypes, shifted.dtypes)
|
|
|
|
def test_tshift(self):
|
|
# PeriodIndex
|
|
with catch_warnings(record=True):
|
|
ps = tm.makePeriodPanel()
|
|
shifted = ps.tshift(1)
|
|
unshifted = shifted.tshift(-1)
|
|
|
|
assert_panel_equal(unshifted, ps)
|
|
|
|
shifted2 = ps.tshift(freq='B')
|
|
assert_panel_equal(shifted, shifted2)
|
|
|
|
shifted3 = ps.tshift(freq=BDay())
|
|
assert_panel_equal(shifted, shifted3)
|
|
|
|
tm.assert_raises_regex(ValueError, 'does not match',
|
|
ps.tshift, freq='M')
|
|
|
|
# DatetimeIndex
|
|
panel = make_test_panel()
|
|
shifted = panel.tshift(1)
|
|
unshifted = shifted.tshift(-1)
|
|
|
|
assert_panel_equal(panel, unshifted)
|
|
|
|
shifted2 = panel.tshift(freq=panel.major_axis.freq)
|
|
assert_panel_equal(shifted, shifted2)
|
|
|
|
inferred_ts = Panel(panel.values, items=panel.items,
|
|
major_axis=Index(np.asarray(panel.major_axis)),
|
|
minor_axis=panel.minor_axis)
|
|
shifted = inferred_ts.tshift(1)
|
|
unshifted = shifted.tshift(-1)
|
|
assert_panel_equal(shifted, panel.tshift(1))
|
|
assert_panel_equal(unshifted, inferred_ts)
|
|
|
|
no_freq = panel.iloc[:, [0, 5, 7], :]
|
|
pytest.raises(ValueError, no_freq.tshift)
|
|
|
|
def test_pct_change(self):
|
|
with catch_warnings(record=True):
|
|
df1 = DataFrame({'c1': [1, 2, 5], 'c2': [3, 4, 6]})
|
|
df2 = df1 + 1
|
|
df3 = DataFrame({'c1': [3, 4, 7], 'c2': [5, 6, 8]})
|
|
wp = Panel({'i1': df1, 'i2': df2, 'i3': df3})
|
|
# major, 1
|
|
result = wp.pct_change() # axis='major'
|
|
expected = Panel({'i1': df1.pct_change(),
|
|
'i2': df2.pct_change(),
|
|
'i3': df3.pct_change()})
|
|
assert_panel_equal(result, expected)
|
|
result = wp.pct_change(axis=1)
|
|
assert_panel_equal(result, expected)
|
|
# major, 2
|
|
result = wp.pct_change(periods=2)
|
|
expected = Panel({'i1': df1.pct_change(2),
|
|
'i2': df2.pct_change(2),
|
|
'i3': df3.pct_change(2)})
|
|
assert_panel_equal(result, expected)
|
|
# minor, 1
|
|
result = wp.pct_change(axis='minor')
|
|
expected = Panel({'i1': df1.pct_change(axis=1),
|
|
'i2': df2.pct_change(axis=1),
|
|
'i3': df3.pct_change(axis=1)})
|
|
assert_panel_equal(result, expected)
|
|
result = wp.pct_change(axis=2)
|
|
assert_panel_equal(result, expected)
|
|
# minor, 2
|
|
result = wp.pct_change(periods=2, axis='minor')
|
|
expected = Panel({'i1': df1.pct_change(periods=2, axis=1),
|
|
'i2': df2.pct_change(periods=2, axis=1),
|
|
'i3': df3.pct_change(periods=2, axis=1)})
|
|
assert_panel_equal(result, expected)
|
|
# items, 1
|
|
result = wp.pct_change(axis='items')
|
|
expected = Panel(
|
|
{'i1': DataFrame({'c1': [np.nan, np.nan, np.nan],
|
|
'c2': [np.nan, np.nan, np.nan]}),
|
|
'i2': DataFrame({'c1': [1, 0.5, .2],
|
|
'c2': [1. / 3, 0.25, 1. / 6]}),
|
|
'i3': DataFrame({'c1': [.5, 1. / 3, 1. / 6],
|
|
'c2': [.25, .2, 1. / 7]})})
|
|
assert_panel_equal(result, expected)
|
|
result = wp.pct_change(axis=0)
|
|
assert_panel_equal(result, expected)
|
|
# items, 2
|
|
result = wp.pct_change(periods=2, axis='items')
|
|
expected = Panel(
|
|
{'i1': DataFrame({'c1': [np.nan, np.nan, np.nan],
|
|
'c2': [np.nan, np.nan, np.nan]}),
|
|
'i2': DataFrame({'c1': [np.nan, np.nan, np.nan],
|
|
'c2': [np.nan, np.nan, np.nan]}),
|
|
'i3': DataFrame({'c1': [2, 1, .4],
|
|
'c2': [2. / 3, .5, 1. / 3]})})
|
|
assert_panel_equal(result, expected)
|
|
|
|
def test_round(self):
|
|
with catch_warnings(record=True):
|
|
values = [[[-3.2, 2.2], [0, -4.8213], [3.123, 123.12],
|
|
[-1566.213, 88.88], [-12, 94.5]],
|
|
[[-5.82, 3.5], [6.21, -73.272], [-9.087, 23.12],
|
|
[272.212, -99.99], [23, -76.5]]]
|
|
evalues = [[[float(np.around(i)) for i in j] for j in k]
|
|
for k in values]
|
|
p = Panel(values, items=['Item1', 'Item2'],
|
|
major_axis=date_range('1/1/2000', periods=5),
|
|
minor_axis=['A', 'B'])
|
|
expected = Panel(evalues, items=['Item1', 'Item2'],
|
|
major_axis=date_range('1/1/2000', periods=5),
|
|
minor_axis=['A', 'B'])
|
|
result = p.round()
|
|
assert_panel_equal(expected, result)
|
|
|
|
def test_numpy_round(self):
|
|
with catch_warnings(record=True):
|
|
values = [[[-3.2, 2.2], [0, -4.8213], [3.123, 123.12],
|
|
[-1566.213, 88.88], [-12, 94.5]],
|
|
[[-5.82, 3.5], [6.21, -73.272], [-9.087, 23.12],
|
|
[272.212, -99.99], [23, -76.5]]]
|
|
evalues = [[[float(np.around(i)) for i in j] for j in k]
|
|
for k in values]
|
|
p = Panel(values, items=['Item1', 'Item2'],
|
|
major_axis=date_range('1/1/2000', periods=5),
|
|
minor_axis=['A', 'B'])
|
|
expected = Panel(evalues, items=['Item1', 'Item2'],
|
|
major_axis=date_range('1/1/2000', periods=5),
|
|
minor_axis=['A', 'B'])
|
|
result = np.round(p)
|
|
assert_panel_equal(expected, result)
|
|
|
|
msg = "the 'out' parameter is not supported"
|
|
tm.assert_raises_regex(ValueError, msg, np.round, p, out=p)
|
|
|
|
def test_multiindex_get(self):
|
|
with catch_warnings(record=True):
|
|
ind = MultiIndex.from_tuples(
|
|
[('a', 1), ('a', 2), ('b', 1), ('b', 2)],
|
|
names=['first', 'second'])
|
|
wp = Panel(np.random.random((4, 5, 5)),
|
|
items=ind,
|
|
major_axis=np.arange(5),
|
|
minor_axis=np.arange(5))
|
|
f1 = wp['a']
|
|
f2 = wp.loc['a']
|
|
assert_panel_equal(f1, f2)
|
|
|
|
assert (f1.items == [1, 2]).all()
|
|
assert (f2.items == [1, 2]).all()
|
|
|
|
ind = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)],
|
|
names=['first', 'second'])
|
|
|
|
def test_multiindex_blocks(self):
|
|
with catch_warnings(record=True):
|
|
ind = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)],
|
|
names=['first', 'second'])
|
|
wp = Panel(self.panel._data)
|
|
wp.items = ind
|
|
f1 = wp['a']
|
|
assert (f1.items == [1, 2]).all()
|
|
|
|
f1 = wp[('b', 1)]
|
|
assert (f1.columns == ['A', 'B', 'C', 'D']).all()
|
|
|
|
def test_repr_empty(self):
|
|
with catch_warnings(record=True):
|
|
empty = Panel()
|
|
repr(empty)
|
|
|
|
def test_rename(self):
|
|
with catch_warnings(record=True):
|
|
mapper = {'ItemA': 'foo', 'ItemB': 'bar', 'ItemC': 'baz'}
|
|
|
|
renamed = self.panel.rename_axis(mapper, axis=0)
|
|
exp = Index(['foo', 'bar', 'baz'])
|
|
tm.assert_index_equal(renamed.items, exp)
|
|
|
|
renamed = self.panel.rename_axis(str.lower, axis=2)
|
|
exp = Index(['a', 'b', 'c', 'd'])
|
|
tm.assert_index_equal(renamed.minor_axis, exp)
|
|
|
|
# don't copy
|
|
renamed_nocopy = self.panel.rename_axis(mapper, axis=0, copy=False)
|
|
renamed_nocopy['foo'] = 3.
|
|
assert (self.panel['ItemA'].values == 3).all()
|
|
|
|
def test_get_attr(self):
|
|
assert_frame_equal(self.panel['ItemA'], self.panel.ItemA)
|
|
|
|
# specific cases from #3440
|
|
self.panel['a'] = self.panel['ItemA']
|
|
assert_frame_equal(self.panel['a'], self.panel.a)
|
|
self.panel['i'] = self.panel['ItemA']
|
|
assert_frame_equal(self.panel['i'], self.panel.i)
|
|
|
|
def test_from_frame_level1_unsorted(self):
|
|
with catch_warnings(record=True):
|
|
tuples = [('MSFT', 3), ('MSFT', 2), ('AAPL', 2), ('AAPL', 1),
|
|
('MSFT', 1)]
|
|
midx = MultiIndex.from_tuples(tuples)
|
|
df = DataFrame(np.random.rand(5, 4), index=midx)
|
|
p = df.to_panel()
|
|
assert_frame_equal(p.minor_xs(2), df.xs(2, level=1).sort_index())
|
|
|
|
def test_to_excel(self):
|
|
try:
|
|
import xlwt # noqa
|
|
import xlrd # noqa
|
|
import openpyxl # noqa
|
|
from pandas.io.excel import ExcelFile
|
|
except ImportError:
|
|
pytest.skip("need xlwt xlrd openpyxl")
|
|
|
|
for ext in ['xls', 'xlsx']:
|
|
with ensure_clean('__tmp__.' + ext) as path:
|
|
self.panel.to_excel(path)
|
|
try:
|
|
reader = ExcelFile(path)
|
|
except ImportError:
|
|
pytest.skip("need xlwt xlrd openpyxl")
|
|
|
|
for item, df in self.panel.iteritems():
|
|
recdf = reader.parse(str(item), index_col=0)
|
|
assert_frame_equal(df, recdf)
|
|
|
|
def test_to_excel_xlsxwriter(self):
|
|
try:
|
|
import xlrd # noqa
|
|
import xlsxwriter # noqa
|
|
from pandas.io.excel import ExcelFile
|
|
except ImportError:
|
|
pytest.skip("Requires xlrd and xlsxwriter. Skipping test.")
|
|
|
|
with ensure_clean('__tmp__.xlsx') as path:
|
|
self.panel.to_excel(path, engine='xlsxwriter')
|
|
try:
|
|
reader = ExcelFile(path)
|
|
except ImportError as e:
|
|
pytest.skip("cannot write excel file: %s" % e)
|
|
|
|
for item, df in self.panel.iteritems():
|
|
recdf = reader.parse(str(item), index_col=0)
|
|
assert_frame_equal(df, recdf)
|
|
|
|
def test_dropna(self):
|
|
with catch_warnings(record=True):
|
|
p = Panel(np.random.randn(4, 5, 6), major_axis=list('abcde'))
|
|
p.loc[:, ['b', 'd'], 0] = np.nan
|
|
|
|
result = p.dropna(axis=1)
|
|
exp = p.loc[:, ['a', 'c', 'e'], :]
|
|
assert_panel_equal(result, exp)
|
|
inp = p.copy()
|
|
inp.dropna(axis=1, inplace=True)
|
|
assert_panel_equal(inp, exp)
|
|
|
|
result = p.dropna(axis=1, how='all')
|
|
assert_panel_equal(result, p)
|
|
|
|
p.loc[:, ['b', 'd'], :] = np.nan
|
|
result = p.dropna(axis=1, how='all')
|
|
exp = p.loc[:, ['a', 'c', 'e'], :]
|
|
assert_panel_equal(result, exp)
|
|
|
|
p = Panel(np.random.randn(4, 5, 6), items=list('abcd'))
|
|
p.loc[['b'], :, 0] = np.nan
|
|
|
|
result = p.dropna()
|
|
exp = p.loc[['a', 'c', 'd']]
|
|
assert_panel_equal(result, exp)
|
|
|
|
result = p.dropna(how='all')
|
|
assert_panel_equal(result, p)
|
|
|
|
p.loc['b'] = np.nan
|
|
result = p.dropna(how='all')
|
|
exp = p.loc[['a', 'c', 'd']]
|
|
assert_panel_equal(result, exp)
|
|
|
|
def test_drop(self):
|
|
with catch_warnings(record=True):
|
|
df = DataFrame({"A": [1, 2], "B": [3, 4]})
|
|
panel = Panel({"One": df, "Two": df})
|
|
|
|
def check_drop(drop_val, axis_number, aliases, expected):
|
|
try:
|
|
actual = panel.drop(drop_val, axis=axis_number)
|
|
assert_panel_equal(actual, expected)
|
|
for alias in aliases:
|
|
actual = panel.drop(drop_val, axis=alias)
|
|
assert_panel_equal(actual, expected)
|
|
except AssertionError:
|
|
pprint_thing("Failed with axis_number %d and aliases: %s" %
|
|
(axis_number, aliases))
|
|
raise
|
|
# Items
|
|
expected = Panel({"One": df})
|
|
check_drop('Two', 0, ['items'], expected)
|
|
|
|
pytest.raises(KeyError, panel.drop, 'Three')
|
|
|
|
# errors = 'ignore'
|
|
dropped = panel.drop('Three', errors='ignore')
|
|
assert_panel_equal(dropped, panel)
|
|
dropped = panel.drop(['Two', 'Three'], errors='ignore')
|
|
expected = Panel({"One": df})
|
|
assert_panel_equal(dropped, expected)
|
|
|
|
# Major
|
|
exp_df = DataFrame({"A": [2], "B": [4]}, index=[1])
|
|
expected = Panel({"One": exp_df, "Two": exp_df})
|
|
check_drop(0, 1, ['major_axis', 'major'], expected)
|
|
|
|
exp_df = DataFrame({"A": [1], "B": [3]}, index=[0])
|
|
expected = Panel({"One": exp_df, "Two": exp_df})
|
|
check_drop([1], 1, ['major_axis', 'major'], expected)
|
|
|
|
# Minor
|
|
exp_df = df[['B']]
|
|
expected = Panel({"One": exp_df, "Two": exp_df})
|
|
check_drop(["A"], 2, ['minor_axis', 'minor'], expected)
|
|
|
|
exp_df = df[['A']]
|
|
expected = Panel({"One": exp_df, "Two": exp_df})
|
|
check_drop("B", 2, ['minor_axis', 'minor'], expected)
|
|
|
|
def test_update(self):
|
|
with catch_warnings(record=True):
|
|
pan = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.]],
|
|
[[1.5, np.nan, 3.], [1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.]]])
|
|
|
|
other = Panel(
|
|
[[[3.6, 2., np.nan], [np.nan, np.nan, 7]]], items=[1])
|
|
|
|
pan.update(other)
|
|
|
|
expected = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.], [1.5, np.nan, 3.]],
|
|
[[3.6, 2., 3], [1.5, np.nan, 7],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.]]])
|
|
|
|
assert_panel_equal(pan, expected)
|
|
|
|
def test_update_from_dict(self):
|
|
with catch_warnings(record=True):
|
|
pan = Panel({'one': DataFrame([[1.5, np.nan, 3],
|
|
[1.5, np.nan, 3],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.]]),
|
|
'two': DataFrame([[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.]])})
|
|
|
|
other = {'two': DataFrame(
|
|
[[3.6, 2., np.nan], [np.nan, np.nan, 7]])}
|
|
|
|
pan.update(other)
|
|
|
|
expected = Panel(
|
|
{'one': DataFrame([[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.]]),
|
|
'two': DataFrame([[3.6, 2., 3],
|
|
[1.5, np.nan, 7],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.]])
|
|
}
|
|
)
|
|
|
|
assert_panel_equal(pan, expected)
|
|
|
|
def test_update_nooverwrite(self):
|
|
with catch_warnings(record=True):
|
|
pan = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.]],
|
|
[[1.5, np.nan, 3.], [1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.]]])
|
|
|
|
other = Panel(
|
|
[[[3.6, 2., np.nan], [np.nan, np.nan, 7]]], items=[1])
|
|
|
|
pan.update(other, overwrite=False)
|
|
|
|
expected = Panel([[[1.5, np.nan, 3], [1.5, np.nan, 3],
|
|
[1.5, np.nan, 3.], [1.5, np.nan, 3.]],
|
|
[[1.5, 2., 3.], [1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.]]])
|
|
|
|
assert_panel_equal(pan, expected)
|
|
|
|
def test_update_filtered(self):
|
|
with catch_warnings(record=True):
|
|
pan = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.]],
|
|
[[1.5, np.nan, 3.], [1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.]]])
|
|
|
|
other = Panel(
|
|
[[[3.6, 2., np.nan], [np.nan, np.nan, 7]]], items=[1])
|
|
|
|
pan.update(other, filter_func=lambda x: x > 2)
|
|
|
|
expected = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.], [1.5, np.nan, 3.]],
|
|
[[1.5, np.nan, 3], [1.5, np.nan, 7],
|
|
[1.5, np.nan, 3.], [1.5, np.nan, 3.]]])
|
|
|
|
assert_panel_equal(pan, expected)
|
|
|
|
def test_update_raise(self):
|
|
with catch_warnings(record=True):
|
|
pan = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.]],
|
|
[[1.5, np.nan, 3.], [1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.],
|
|
[1.5, np.nan, 3.]]])
|
|
|
|
pytest.raises(Exception, pan.update, *(pan, ),
|
|
**{'raise_conflict': True})
|
|
|
|
def test_all_any(self):
|
|
assert (self.panel.all(axis=0).values == nanall(
|
|
self.panel, axis=0)).all()
|
|
assert (self.panel.all(axis=1).values == nanall(
|
|
self.panel, axis=1).T).all()
|
|
assert (self.panel.all(axis=2).values == nanall(
|
|
self.panel, axis=2).T).all()
|
|
assert (self.panel.any(axis=0).values == nanany(
|
|
self.panel, axis=0)).all()
|
|
assert (self.panel.any(axis=1).values == nanany(
|
|
self.panel, axis=1).T).all()
|
|
assert (self.panel.any(axis=2).values == nanany(
|
|
self.panel, axis=2).T).all()
|
|
|
|
def test_all_any_unhandled(self):
|
|
pytest.raises(NotImplementedError, self.panel.all, bool_only=True)
|
|
pytest.raises(NotImplementedError, self.panel.any, bool_only=True)
|
|
|
|
# GH issue 15960
|
|
def test_sort_values(self):
|
|
pytest.raises(NotImplementedError, self.panel.sort_values)
|
|
pytest.raises(NotImplementedError, self.panel.sort_values, 'ItemA')
|
|
|
|
|
|
class TestLongPanel(object):
|
|
"""
|
|
LongPanel no longer exists, but...
|
|
"""
|
|
|
|
def setup_method(self, method):
|
|
panel = make_test_panel()
|
|
self.panel = panel.to_frame()
|
|
self.unfiltered_panel = panel.to_frame(filter_observations=False)
|
|
|
|
def test_ops_differently_indexed(self):
|
|
with catch_warnings(record=True):
|
|
# trying to set non-identically indexed panel
|
|
wp = self.panel.to_panel()
|
|
wp2 = wp.reindex(major=wp.major_axis[:-1])
|
|
lp2 = wp2.to_frame()
|
|
|
|
result = self.panel + lp2
|
|
assert_frame_equal(result.reindex(lp2.index), lp2 * 2)
|
|
|
|
# careful, mutation
|
|
self.panel['foo'] = lp2['ItemA']
|
|
assert_series_equal(self.panel['foo'].reindex(lp2.index),
|
|
lp2['ItemA'],
|
|
check_names=False)
|
|
|
|
def test_ops_scalar(self):
|
|
with catch_warnings(record=True):
|
|
result = self.panel.mul(2)
|
|
expected = DataFrame.__mul__(self.panel, 2)
|
|
assert_frame_equal(result, expected)
|
|
|
|
def test_combineFrame(self):
|
|
with catch_warnings(record=True):
|
|
wp = self.panel.to_panel()
|
|
result = self.panel.add(wp['ItemA'].stack(), axis=0)
|
|
assert_frame_equal(result.to_panel()['ItemA'], wp['ItemA'] * 2)
|
|
|
|
def test_combinePanel(self):
|
|
with catch_warnings(record=True):
|
|
wp = self.panel.to_panel()
|
|
result = self.panel.add(self.panel)
|
|
wide_result = result.to_panel()
|
|
assert_frame_equal(wp['ItemA'] * 2, wide_result['ItemA'])
|
|
|
|
# one item
|
|
result = self.panel.add(self.panel.filter(['ItemA']))
|
|
|
|
def test_combine_scalar(self):
|
|
with catch_warnings(record=True):
|
|
result = self.panel.mul(2)
|
|
expected = DataFrame(self.panel._data) * 2
|
|
assert_frame_equal(result, expected)
|
|
|
|
def test_combine_series(self):
|
|
with catch_warnings(record=True):
|
|
s = self.panel['ItemA'][:10]
|
|
result = self.panel.add(s, axis=0)
|
|
expected = DataFrame.add(self.panel, s, axis=0)
|
|
assert_frame_equal(result, expected)
|
|
|
|
s = self.panel.iloc[5]
|
|
result = self.panel + s
|
|
expected = DataFrame.add(self.panel, s, axis=1)
|
|
assert_frame_equal(result, expected)
|
|
|
|
def test_operators(self):
|
|
with catch_warnings(record=True):
|
|
wp = self.panel.to_panel()
|
|
result = (self.panel + 1).to_panel()
|
|
assert_frame_equal(wp['ItemA'] + 1, result['ItemA'])
|
|
|
|
def test_arith_flex_panel(self):
|
|
with catch_warnings(record=True):
|
|
ops = ['add', 'sub', 'mul', 'div',
|
|
'truediv', 'pow', 'floordiv', 'mod']
|
|
if not compat.PY3:
|
|
aliases = {}
|
|
else:
|
|
aliases = {'div': 'truediv'}
|
|
self.panel = self.panel.to_panel()
|
|
|
|
for n in [np.random.randint(-50, -1), np.random.randint(1, 50), 0]:
|
|
for op in ops:
|
|
alias = aliases.get(op, op)
|
|
f = getattr(operator, alias)
|
|
exp = f(self.panel, n)
|
|
result = getattr(self.panel, op)(n)
|
|
assert_panel_equal(result, exp, check_panel_type=True)
|
|
|
|
# rops
|
|
r_f = lambda x, y: f(y, x)
|
|
exp = r_f(self.panel, n)
|
|
result = getattr(self.panel, 'r' + op)(n)
|
|
assert_panel_equal(result, exp)
|
|
|
|
def test_sort(self):
|
|
def is_sorted(arr):
|
|
return (arr[1:] > arr[:-1]).any()
|
|
|
|
sorted_minor = self.panel.sort_index(level=1)
|
|
assert is_sorted(sorted_minor.index.labels[1])
|
|
|
|
sorted_major = sorted_minor.sort_index(level=0)
|
|
assert is_sorted(sorted_major.index.labels[0])
|
|
|
|
def test_to_string(self):
|
|
buf = StringIO()
|
|
self.panel.to_string(buf)
|
|
|
|
def test_to_sparse(self):
|
|
if isinstance(self.panel, Panel):
|
|
msg = 'sparsifying is not supported'
|
|
tm.assert_raises_regex(NotImplementedError, msg,
|
|
self.panel.to_sparse)
|
|
|
|
def test_truncate(self):
|
|
with catch_warnings(record=True):
|
|
dates = self.panel.index.levels[0]
|
|
start, end = dates[1], dates[5]
|
|
|
|
trunced = self.panel.truncate(start, end).to_panel()
|
|
expected = self.panel.to_panel()['ItemA'].truncate(start, end)
|
|
|
|
# TODO truncate drops index.names
|
|
assert_frame_equal(trunced['ItemA'], expected, check_names=False)
|
|
|
|
trunced = self.panel.truncate(before=start).to_panel()
|
|
expected = self.panel.to_panel()['ItemA'].truncate(before=start)
|
|
|
|
# TODO truncate drops index.names
|
|
assert_frame_equal(trunced['ItemA'], expected, check_names=False)
|
|
|
|
trunced = self.panel.truncate(after=end).to_panel()
|
|
expected = self.panel.to_panel()['ItemA'].truncate(after=end)
|
|
|
|
# TODO truncate drops index.names
|
|
assert_frame_equal(trunced['ItemA'], expected, check_names=False)
|
|
|
|
# truncate on dates that aren't in there
|
|
wp = self.panel.to_panel()
|
|
new_index = wp.major_axis[::5]
|
|
|
|
wp2 = wp.reindex(major=new_index)
|
|
|
|
lp2 = wp2.to_frame()
|
|
lp_trunc = lp2.truncate(wp.major_axis[2], wp.major_axis[-2])
|
|
|
|
wp_trunc = wp2.truncate(wp.major_axis[2], wp.major_axis[-2])
|
|
|
|
assert_panel_equal(wp_trunc, lp_trunc.to_panel())
|
|
|
|
# throw proper exception
|
|
pytest.raises(Exception, lp2.truncate, wp.major_axis[-2],
|
|
wp.major_axis[2])
|
|
|
|
def test_axis_dummies(self):
|
|
from pandas.core.reshape.reshape import make_axis_dummies
|
|
|
|
minor_dummies = make_axis_dummies(self.panel, 'minor').astype(np.uint8)
|
|
assert len(minor_dummies.columns) == len(self.panel.index.levels[1])
|
|
|
|
major_dummies = make_axis_dummies(self.panel, 'major').astype(np.uint8)
|
|
assert len(major_dummies.columns) == len(self.panel.index.levels[0])
|
|
|
|
mapping = {'A': 'one', 'B': 'one', 'C': 'two', 'D': 'two'}
|
|
|
|
transformed = make_axis_dummies(self.panel, 'minor',
|
|
transform=mapping.get).astype(np.uint8)
|
|
assert len(transformed.columns) == 2
|
|
tm.assert_index_equal(transformed.columns, Index(['one', 'two']))
|
|
|
|
# TODO: test correctness
|
|
|
|
def test_get_dummies(self):
|
|
from pandas.core.reshape.reshape import get_dummies, make_axis_dummies
|
|
|
|
self.panel['Label'] = self.panel.index.labels[1]
|
|
minor_dummies = make_axis_dummies(self.panel, 'minor').astype(np.uint8)
|
|
dummies = get_dummies(self.panel['Label'])
|
|
tm.assert_numpy_array_equal(dummies.values, minor_dummies.values)
|
|
|
|
def test_mean(self):
|
|
with catch_warnings(record=True):
|
|
means = self.panel.mean(level='minor')
|
|
|
|
# test versus Panel version
|
|
wide_means = self.panel.to_panel().mean('major')
|
|
assert_frame_equal(means, wide_means)
|
|
|
|
def test_sum(self):
|
|
with catch_warnings(record=True):
|
|
sums = self.panel.sum(level='minor')
|
|
|
|
# test versus Panel version
|
|
wide_sums = self.panel.to_panel().sum('major')
|
|
assert_frame_equal(sums, wide_sums)
|
|
|
|
def test_count(self):
|
|
with catch_warnings(record=True):
|
|
index = self.panel.index
|
|
|
|
major_count = self.panel.count(level=0)['ItemA']
|
|
labels = index.labels[0]
|
|
for i, idx in enumerate(index.levels[0]):
|
|
assert major_count[i] == (labels == i).sum()
|
|
|
|
minor_count = self.panel.count(level=1)['ItemA']
|
|
labels = index.labels[1]
|
|
for i, idx in enumerate(index.levels[1]):
|
|
assert minor_count[i] == (labels == i).sum()
|
|
|
|
def test_join(self):
|
|
with catch_warnings(record=True):
|
|
lp1 = self.panel.filter(['ItemA', 'ItemB'])
|
|
lp2 = self.panel.filter(['ItemC'])
|
|
|
|
joined = lp1.join(lp2)
|
|
|
|
assert len(joined.columns) == 3
|
|
|
|
pytest.raises(Exception, lp1.join,
|
|
self.panel.filter(['ItemB', 'ItemC']))
|
|
|
|
def test_pivot(self):
|
|
with catch_warnings(record=True):
|
|
from pandas.core.reshape.reshape import _slow_pivot
|
|
|
|
one, two, three = (np.array([1, 2, 3, 4, 5]),
|
|
np.array(['a', 'b', 'c', 'd', 'e']),
|
|
np.array([1, 2, 3, 5, 4.]))
|
|
df = pivot(one, two, three)
|
|
assert df['a'][1] == 1
|
|
assert df['b'][2] == 2
|
|
assert df['c'][3] == 3
|
|
assert df['d'][4] == 5
|
|
assert df['e'][5] == 4
|
|
assert_frame_equal(df, _slow_pivot(one, two, three))
|
|
|
|
# weird overlap, TODO: test?
|
|
a, b, c = (np.array([1, 2, 3, 4, 4]),
|
|
np.array(['a', 'a', 'a', 'a', 'a']),
|
|
np.array([1., 2., 3., 4., 5.]))
|
|
pytest.raises(Exception, pivot, a, b, c)
|
|
|
|
# corner case, empty
|
|
df = pivot(np.array([]), np.array([]), np.array([]))
|
|
|
|
|
|
def test_panel_index():
|
|
index = panelm.panel_index([1, 2, 3, 4], [1, 2, 3])
|
|
expected = MultiIndex.from_arrays([np.tile([1, 2, 3, 4], 3),
|
|
np.repeat([1, 2, 3], 4)],
|
|
names=['time', 'panel'])
|
|
tm.assert_index_equal(index, expected)
|
|
|
|
|
|
def test_panel_np_all():
|
|
with catch_warnings(record=True):
|
|
wp = Panel({"A": DataFrame({'b': [1, 2]})})
|
|
result = np.all(wp)
|
|
assert result == np.bool_(True)
|